%DRAWING{"distance"}%
%$\mbox{where } \vec{u_{0}} \mbox{ is a unit vector}$%
%$g: \vec{x} = \vec{p} + \mu \vec{u_{0}} $%
%$(1):\mbox{    }cos{\alpha} = \frac{\displaystyle|\vec{f}-\vec{p}|}{\displaystyle|\vec{r}-\vec{p}|}\mbox{    }\to\mbox{    } |\vec{f}-\vec{p}| =\ cos{\alpha}|\vec{r}-\vec{p}| $% 
%$(2):\mbox{    }\cos{\alpha} = \frac{\displaystyle|\vec{a}\cdot\vec{b}|}{\displaystyle|\vec{a}|\cdot|\vec{b}|}=\vec{a_{0}}\cdot\vec{b_{0}}$%
%$(1),\;(2):\mbox{    } |\vec{f}-\vec{p}| = \frac{\displaystyle(\vec{f}-\vec{p})}{\displaystyle|\vec{a}-\vec{b}|}\cdot\vec{u_{0}}\cdot|\vec{r}-\vec{p}| = |(\vec{f}-\vec{p})\cdot\vec{u_{0}}|$%
Phytagoras' thorem gives:
%$d=\sqrt{\displaystyle(\vec{r}-\vec{p})^{2}-(\displaystyle(\vec{r}-\vec{p})\cdot\vec{u_{0}})^{2}}$%
...Back to 
Vertex Finding
-- 
PeterZumbruch - 23 Feb 2004