The TRB Readout System

Outline

• Motivation
• TRB3 + FEE
 – Two years ago and now
• Applications
• Conclusion
Motivation: Digital Electronics as FEE

• Use commercial off the shelf FPGAs as FEE
 – Easily available, industrial quality design, package and documentation
 – Upgrade included (new silicon on the roadmap)
 – Amount of internal resources is very large
 – Vendor independent

• How to reach that goal?
 – We “misuse” digital FPGAs in the asynchronous and analogue domain for:
 • Precise Time to Digital Conversion (TDC)
 • Discrimination, ADC, QDC
 – We keep the design small and simple
TDC in FPGA: status

- TDC architecture is very powerful
 - 3.6 ps RMS time precision
 - no cut on tails
- Tradeoff for number of channels, time precision and dead time can be adjusted to the needs of the application
 - 64 TDC channels in a FPGA
 - ~10 ps RMS time precision [RMS]
- From an idea (2 years ago) to a working product.....
• 5 Lattice ECP3-150EA FPGAs
• 4 peripheral FPGAs as TDCs with 256+4 channels
• The central FPGA acts as Central Trigger System (CTS), 4 channels TDC and GbE controller
• Direct GbE connection for data and slow control; no CPU on board, all implemented in the FPGA
• typical ~10 ps RMS time precision and <20 ps RMS time precision on all channels
• Minimum pulse width <500ps
• 67 MHz max. hit rate per channel
• 700 KHz max. data readout trigger rate
• TrbNetwork for internal communication
• Usable for large system as well as stand alone system: just 48V and GbE are needed to take data
• Can be used as a pure digital board, e.g. as a data collector module or as a TRBNetwork-hub
• Applications: Leading edge and pulse width measurements of discriminated signals from FEE
TRB3: Advantages for the User

• All the connectivity and data transport issues are solved and proven to work reliably:
 – Many years of development of the internal network protocol TRBNet
 – GbE as data transport and SlowControl interface
 – Eventbuilding software for large systems is included (HADES)
 – Analysis software is available, even online software
 – SlowControl interfaces for the TRB, the CTS and the FEE are prepared
 – In several hours of configuration a system is up and taking data
TRB3: Features

- Full Control via Web2.0 applications
- DABC and GO4 fully supported, others analysis code available
How to connect to a MCP/PMT for RICH/DIRC applications?

- MCPs/PMTs need amplification and discrimination
- Apply KISS principle: FPGA at the FEE
- The signals from the detector are pre-amplified with commercial amplifiers: MMICs
- Input LVDS buffers in FPGAs are used as discriminators – Lattice MachXO2 is used
- The leading edge time and Time over Threshold is encoded in the digital pulse generated at the output LVDS buffers
- The thresholds are set by using the FPGA as DAC via PWM and low pass filter

- All the FEE is directly at the detector and only digital signals are sent out for measurement
- For precise time measurements of the digital pulse the TRB3 is used
FEE: Lab Results

- 500 μV, 6 ns width, analogue signal as input to PCB
- Amplified by factor 40, discriminated at the FPGA-LVDS receiver and sent out to TRB3 as nice LVDS signal
- Threshold is set on the reference LVDS input via a PWM + low-pass with a resolution of <100 μV
- FEE cost (without PCB+connectors) per channel only 0.56€ (16 channel version)
- First tested at the PANDA DIRC beam time in Jülich with 2400 channels PMT/MCP-PMT: Adrian Schmidt: “Cherenkov Rings”
- Specialized versions (connectors) have been built for Barrel-DIRC MCP and BM@N
- Recently tested during the PANDA-DIRC-beam-time in Mainz
 - Result: Operation was fine but need to understand the single photon response in the lab first
More FEE

- Principle driven to the limit for CBM-RICH
 - 64 channels on 5cm x 16cm
 - All analogue (amplification, thresholds, discrimination) + digital (TDCs and DAQ) electronics included
 - Tested during the CBM October 2012 test beam
 - Results are not very good, amplifiers tend to oscillate
More TRB/FEE Applications

• The TRB3 has not the right form factor for some applications
 – Example: CBM-TOF
 – ¼ of the TRB3, no analogue part
• Animal PET application: 52 channel ADC AddOn in design phase → 208 channels per TRB3
• Many more small adapter boards
TRB3 FEE: Padiwa-AMPS

- FEE with precise (~0.2%) charge measurement: ECAL + PSD

FPGA with threshold circuit
output: LVDS time signals

8x input (MMCX)
attenuator & fast amp
integrator
KISS-Part
COME-Part

power connector
52 mm

88 mm

Basis: PaDiWa front-end board for TRBv3

Michael Traxler, GSI
• Multichannel ADC
 – generate ramp on reference pin, measure time until ref. crosses signal
 – Proof of principle done, but no working design available
 – Performance: 64 channel, 10 bit resolution, 20-40MSPS ADC seems possible
Other Digital Applications

- The PANDA Time and Trigger Distribution Network (SODA) is currently developed on the basis of the TRB3
 - All data transport protocol is already finished (TRBNet)
 - The Deterministic Latency messages will be added to the network protocol

From PANDA-FEE/DAQ Meeting in April 2013
Myroslav Kavatsyuk
TRB Readout Platform: Status

• TRB3 produced nearly 100 times
• TRB3 TDC + DAQ and SlowControl functionality established and proven to work reliably in many different locations, also during several beam times
• Development has not ended!
 – Bugfixes
 – Improving performance
 – GbE to 100MBytes/s (currently 50MBytes/s)
 – Currently 256 channels for one edge only
 – KISS-FEE is working but not proven to be as good as the solution with dedicated ASICs: Only the experiment groups can tell
 – Tasks: QDC-FEE and ADC-in-FPGA
• Main Task: Deploying system in many different locations and learn where the deficiencies are and how we can improve: ~25 setups (mainly labs)
 – Main emphasis are PANDA-DIRC and CBM-RICH
TRB3 collaboration

- Main Members: developers
 - Cahit Ugur
 - Jan Michel
 - Grzegorz Korcyl
 - Ludwig Maier
 - Manuel Penschuck
 - Joern Adamczewski-Musch
 - Sergey Linev
 - Matthias Hoeck
 - Andreas Neiser
 - Marek Palka
 - Michael Traxler

- Main Users: bug finders!
 - PANDA DIRC group in Mainz and at GSI
 - CBM-RICH: Christian Pauly (Wuppertal)
 - PANDA-DIRC-WASA: Adrian Schmidt (Erlangen)
 - Many more with small setups:
 - USA, Russia, Israel, etc.
Conclusion

• From the idea 2 years ago with a lot of enthusiasm and manpower involved:
 – TRB3: TDC + DAQ are well established and usable in production
 – Deployment is straight forward
 – KISS-FEE for MCPs/PMTs was built and works in the lab perfectly, but not fully approved up to now by the experiments
 – New FEE is constantly developed as requested
 – Still many things to improve on!
 – A large and motivated team (includes users) keeps the project alive
Thank you for your attention!