ModelSIim
VHDL
Simulation
Tutorial

Watch Design

UG102 (v1.1) July 21, 2000

& XILINX®

2 XILINX"

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

ASYL, FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE, XACT, XILINX,
XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, CoolRunner, CORE Gen-
erator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Fast Zero Power, Foundation, HardWire, IRL, LCA, Logi-
BLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, MultiLINX, PLUSASM, PowerGuide, PowerMaze, QPro, RealPCl, RealPCl 64/66,
Selectl/O, SelectRAM, SelectRAM+, Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, Smartspec, SMARTSwitch, Spartan, TrueMap, UIM,
VectorMaze, VersaBlock, VersaRing, Virtex, WebFitter, WebLINX, WebPACK, XABEL, XACTstep, XACTstep Advanced, XACTstep Foundry,
XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation Series, XPP, XSlI,
and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The Programmable Gate Array Company are service marks
of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey any
license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in
order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any
circuitry described herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under one or more
of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418;
4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390;
5,155,432; 5,166,858; 5,224,056; 5,243,238; 5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377;
5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181, 5,448,493; 5,450,021; 5,450,022; 5,453,706; 5,455,525; 5,466,117;
5,469,003; 5,475,253; 5,477,414, 5,481,206; 5,483,478; 5,486,707; 5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196;
5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124;
5,5617,135; 5,521,835; 5,521,837; 5,523,963; 5,523,971, 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001, 5,559,751, 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528; 5,563,529; 5,563,827;
5,665,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738; 5,583,450; 5,583,452; 5,592,105;
5,5694,367; 5,598,424; 5,600,263; 5,600,264, 5,600,271; 5,600,597; 5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021;
5,617,041; 5,617,327; 5,617,573; 5,623,387, 5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851, 5,636,368; 5,640,106;
5,642,058; 5,646,545; 5,646,547; 5,646,564, 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904, 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270; 5,675,589; 5,677,638;
5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276; 5,694,399; 5,696,454; 5,701,091; 5,701,441;
5,703,759; 5,705,932; 5,705,938; 5,708,597, 5,712,579; 5,715,197; 5,717,340; 5,719,506; 5,719,507; 5,724,276, 5,726,484; 5,726,584;
5,734,866; 5,734,868; 5,737,234, 5,737,235; 5,737,631, 5,742,178; 5,742,531; 5,744,974, 5,744,979; 5,744,995; 5,748,942; 5,748,979;
5,752,006; 5,752,035; 5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479; 5,790,882; 5,795,068;
5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016; 5,815,404, 5,815,405; 5,818,255; 5,818,730;
5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230; 5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845;
5,831,907; 5,835,402; 5,838,167; 5,838,901, 5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424, 5,844,829; 5,844,844; 5,847,577;
5,847,579; 5,847,580; 5,847,993; 5,852,323; 5,861,761, 5,862,082; 5,867,396; 5,870,309; 5,870,327; 5,870,586; 5,874,834; 5,875,111;
5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525; 5,886,538; 5,889,411, 5,889,413; 5,889,701; 5,892,681; 5,892,961;
5,894,420; 5,896,047; 5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893; 5,907,245; 5,907,248; 5,909,125; 5,909,453;
5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201, 5,920,202; 5,920,223; 5,923,185; 5,923,602; 5,923,614, 5,928,338; 5,931,962;
5,933,023; 5,933,025; 5,933,369; 5,936,415; 5,936,424; 5,939,930; 5,942,913; 5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712;
5,949,983; 5,949,987; 5,952,839; 5,952,846; 5,955,888; 5,956,748; 5,958,026; 5,959,821; 5,959,881, 5,959,885; 5,961,576; 5,962,881;
5,963,048; 5,963,050; 5,969,539; 5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958; 5,990,704; 5,991,523;
5,991,788; 5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025; 6,002,282; and 6,002,991; Re. 34,363, Re. 34,444,
and Re. 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are free
from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or correctness of any engineering
or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without the
written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2000 Xilinx, Inc. All Rights Reserved.

ModelSim VHDL Simulation Tutorial www.xilinx.com UG102 (v1.1) July 21, 2000
1-800-255-7778

http://www.xilinx.com

ModelSim VHDL Simulation Tutorial
UG102 (v1.1) July 21, 2000

The following table shows the revision history for this document.

Date Version Revision
06/01/00 1.0 Initial Xilinx release.
07/21/00 1.1 Accumulated miscellaneous updates and bug fixes.

UG102 (v1.1) July 21, 2000

www.Xilinx.com
1-800-255-7778

ModelSim VHDL Simulation Tutorial

http://www.xilinx.com

ModelSim VHDL Simulation Tutorial www.xilinx.com UG102 (v1.1) July 21, 2000
1-800-255-7778

http://www.xilinx.com

Contents

ModelSim VHDL Simulation Tutorial
DeSigN DESCIIPLION ...ttt st
Before Beginning the Tutorial ...

Tutorial INStAllatioNccoiii s
Tutorial Directory and FIlS.........cooiiiiiiiieie e e
VHDL DESIgN FIlES ..ottt s e
SCIIPT FIIES .o bbb e
Simulation Models FOr IMTH ..o e

Including CoreGen COMPONENTS. ...t
Creating the Tenths CORE Generator COMPONENt...........covevevieaenenenieieseeneeeeeeans
Instantiating the CORE Generator Module...........cccoiiiiiii i
Using the configuration declaration.............coccooe i

RTL SIMUIAETON ..ot
Copying Source Files to the Functional Simulation Directorycccccceevveevveennnn.
StArting MOAEISIMcoviiiei e
Creating the WOIK DIFECIOTYoviiiiieieeietie ettt e
Compiling the SOUICE FIleS ...
INVOKE the SIMUIALOT ... e
RUNNING the SIMUIALIONciii e

Synthesizing/Implementing the Watch Design ...
TIMING STIMUIATION ...t

UG102 (v1.1) July 21, 2000 www.xilinx.com
ModelSim VHDL Simulation Tutorial 1-800-255-7778

http://www.xilinx.com

S XILINX®

Y www.xilinx.com UG102 (v1.1) July 21, 2000
1-800-255-7778 ModelSim VHDL Simulation Tutorial

http://www.xilinx.com

QO XILINX®

ModelSim VHDL Simulation Tutorial

This tutorial shows you how the VHDL simulation flow works for Xilinx FPGA designs
using MTI’s Modelsim simulator. The design, watch, targets a Virtex device and
implements the functionality of a typical runner’s stopwatch. This tutorial contains the
following sections.

= “Design Description”

= “Before Beginning the Tutorial”

= “Tutorial Installation”

e “Including CoreGen Components”

= “Creating the Tenths CORE Generator Component”
= “Synthesizing/Implementing the design”

= “Timing Simulation”

Design Description
Throughout this tutorial, the design is referred to as Watch which is a design for a runner’s
stop watch. The tutorial assumes that you have a working knowledge of VHDL.

The Watch design is a counter that counts up from 0 to 59, then resets to zero, and starts
over. There are three external inputs and three external outputs in the completed design.

The Watch design inputs, outputs, and macros are summarized below.
Inputs

= STRTSTOP—The start/stop button of the stopwatch. This is an active-low signal that
must be depressed then released to start or stop the counting.

= RESET—Forces the signals TENSOUT and ONESOUT to be “00” after it has been
stopped.

= CLOCK—System clock provided externally by the designer.
Outputs

= TENSOUT[6:0]—7-bit bus which represents the tens-digit of the stopwatch value.
This is viewable on the 7-segment LED display of the Xilinx demo board.

= ONESOUT[6:0]—Similar to TENSOUT bus above, but represents the one-digit of the
stopwatch value.

e TENTHSOUTI[9:0]—10-bit bus which represents the tenths-digit of the stopwatch
value. This bus is one-hot encoded. The output is displayed to the LED bar.

Macros
The top level of the Watch design consists of the following functional blocks.

= STATMACH—A statemachine that controls starting, stopping, and clearing the
counters (One-hot encoded).

UG102 (v1.1) July 21, 2000 www.xilinx.com 1
ModelSim VHDL Simulation Tutorial 1-800-255-7778

http://www.xilinx.com

S XILINX®

: ModelSim VHDL Simulation Tutorial

TENTHS—A Coregen 10-bit one-hot counter macro which outputs the Tenths digit as
10-bit one-hot value.

CNT60—A Counter that outputs Ones and Tens digits as 4-bit binary values. Counts 0
to 59 (decimal).

HEX2LED—Converts 4-bit values of Ones and Tens to 7-segment LED format.
DECODE—Decodes binary values to one-hot.

Before Beginning the Tutorial

Before you begin this tutorial, set up your system to use the Model Technology and Xilinx
software as follows.

1.

Install the following software.
- Xilinx Development System 3.1i
- Model Technology ModelSim EE/PE 5.3 or later

Verify that your system is properly configured. Consult the release notes and
installation notes that came with your software package for more information.

Tutorial Installation

The Watch tutorial file is available for download from the Xilinx Web site at
http://www.xilinx.com/support/techsup/tutorials.

Tutorial Directory and Files

The tutorial directory and tutorial files needed to complete the design are provided for
you. Some files are not present since you will create them in later steps. The following table
lists the contents of the tutorial directories.

Directory Description
mtivhdl_tut/src VHDL source and script files
mtivhdl_tut/soln VHDL solutions directory
mtivhdl_tut/watch VHDL Tutorial Directory

VHDL Design Files

Watch is the top level design. The tutorial uses the following VHDL files.

stopwatch.vhd

statmach.vhd

smallcntr.vhd

cnt60.vhd

hex2led.vhd

decode.vhd

testbench.vhd (VHDL testbench for simulation)

Note: The Tenths one-hot counter is a Coregen macro. The tenths.vho file is indirectly used
in RTL simulation. To get familiarized with how the Coregen RTL simulation flow works,
please consult the Coregen User Guide at
http://support.xilinx.com/support/techsup/journals/coregen/2.1i/docs.htm

www.xilinx.com UG102 (v1.1) July 21, 2000
1-800-255-7778 ModelSim VHDL Simulation Tutorial

http://www.xilinx.com
http://www.xilinx.com/support/techsup/tutorials
http://support.xilinx.com/support/techsup/journals/coregen/2.1i/docs.htm

: ModelSim VHDL Simulation Tutorial 2:)(||_|NX®

Script Files
The following script files are provided to automate the steps in this tutorial.
e rtl_sim.do
e stim.do
e time_sim.do

Simulation Models for MTI

To simulate Xilinx designs with ModelSim in VHDL, you need the following simulation
libraries which you must compile.

= UNISIMS Library—The Unisim library is used for behavioral (RTL) simulation with
instantiated components in the netlist, and for post-synthesis simulation. The library
is VITAL compliant, and it also adds the device start-up components ROC, ROCBUF,
TOC, TOCBUF, and STARTBUF, for simulation.

= LogiBLOX Library—The LogiBLOX library is used for designs containing LogiBLOX
components, during pre-synthesis (RTL), and post-synthesis simulation. Since
LogiBLOX models are not supported in Virtex, this library will not be used in this
tutorial.

e SIMPRIM Library—The SIMPRIM library is used for post Ngdbuild (gate level
functional), post-Map (partial timing), and post-place-and-route (full timing)
simulations. This library is architecture independent.

= COREGEN Library —CORE Generator is a graphical interactive design tool you use
to create high-level modules such as counters, shift registers, RAM and multiplexers.
The CORE Generator HDL library models are used for RTL simulation, and the
models do not use library components for global signals.The CHDL CORE Generator
source files are found in $XILINX/vhdl/src/XilinxCoreLib.

For detailed instructions on compiling these libraries, see Xilinx Solution # 2561 which is
available on the Internet at http://www.xilinx.com/techdocs/2561.htm.

After compiling the libraries, notice that ModelSim creates a file called modelsim.ini. View
this file and notice that the upper portion defines the locations of the compiled libraries.
When doing a simulation, the modelsim.ini file must be provided either by copying the file
directly to the directory where the HDL files are to be compiled and the simulation is to be
run, or by setting the MODELSIM environment variable to the location of your master .ini
file. You must set this variable since the ModelSim installation does not initially declare the
path for you. For UNIX, type the following.

setenv MODELSIM /path/to/the/modelsim.ini

Including CoreGen Components

Creating the Tenths CORE Generator Component

Since the Watch design contains a CORE Generator macro, you must create it before
performing RTL simulation or implementation. When creating the CORE Generator
component, you will create a behavioral simulation netlist for RTL simulation, as well as
the implementation netlist.

In this section, you create a CORE Generator module called Tenths. Tenths is a 4-bit binary
encoded counter. The 4-bit number is decoded to count the tenths digit of the stopwatch’s
time value.

Creating the Core Generator module

You select the type of module you want in the CORE Generator dialog box as well as the
specific features of the module.

UG102 (v1.1) July 21, 2000 www.xilinx.com 3
ModelSim VHDL Simulation Tutorial 1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/support/techsup/journals/coregen/2.1i/docs.htm
http://www.xilinx.com/techdocs/2561.htm

S XILINX®

: ModelSim VHDL Simulation Tutorial

To invoke the CORE Generator GUI, type coregen at the UNIX prompt, or if you are using
a PC, click on the CORE Generator icon in the Xilinx Program group.

From Project -> Project Options link, select “VHDL” and your synthesis vendor of choice
for your design entry.

In the Target Architecture field, choose the Virtex family.

CORE Generator Setup Dialog

Click OK to close the dialog box.

A list of possible COREs are available. Double Click on Basic Elements - Counters.

Double Click on Binary Counter to open the Binary Counter dialog. This dialog allows the
user to customize the counter to the design specifications.

Fill in the Binary Counter dialog with the following settings.
Component Name: tenths

Defines the name of the module.

Output Width: 4

Defines the width of the output bus.

Operation: Up

Defines how the counter will operate. This field is dependent on the type of module you
select.

Count Restrictions: Restrict Count to A.

This dictates the maximum count value.

Output Options: ThresholdO0 set to A

Signal goes high when the value specified has been reached.
Output Options: Registered

CORE Generator Module Selection

Click on the Register Options button to open the Register Options dialog. Enter the
following settings.

Clock Enable: Selected

Asynchronous Settings: Init with a value of 1.
Synchronous Settings: None

Click Ok.

Check that only the following pins are used.
AINIT

CE

Q

Q_Thresh0

CLK

Click Generate. The module is created.

Select Cancel and close Core Generator.

CORE Generator generates the following output Files.

tenths.edn

This file is the netlist that is used during the Translate phase of implementation.
tenths.vho

www.xilinx.com UG102 (v1.1) July 21, 2000
1-800-255-7778 ModelSim VHDL Simulation Tutorial

http://www.xilinx.com

: ModelSim VHDL Simulation Tutorial 2:)(||_|NX®

This is the instantiation template that is used to incorporate the CORE Generator module
in your source VHDL.

tenths.xco

This file stores the configuration information for the Tenths module.
coregen.prj

This file stores the CORE Generator configuration for the project.

Instantiating the CORE Generator Module
Open stopwatch.vhd in a text editor.
At the line that states:
“-- Insert Coregen Counter Component Declaration”
Open the tenths.vho file, and cut-and-paste the component declaration to stopwatch.vhd.
The template component declaration for the Coregen instantiation is inserted.
At the line that states:
“--Place the CoreGen Counter Instantiation”

Open the tenths.vho file, cut-and-paste from the line “your_instance_name : tenths” to
“AINIT => AINIT);” to stopwatch.vhd.

Change “your_instance_name” to “XCOUNTER”.

Edit this code to connect the signals in the Stopwatch design to the ports of the CoreGen
module. The completed code is shown below.

XCOUNTER : tenths port map (Q => Q, CLK => CLK, Q_THRESHO0 => xtermcnt, CE =>
clkenable, AINIT => rstint);

From the tenths.vho file, also cut and paste the section beginning from line “for all : tenths
use entity” to “end for;” and paste it to the bottom of the stopwatch.vhd file, after the “end
inside;” line.

Save stopwatch.vhd.

Using the configuration declaration

Configurations are a primary design unit used to bind component instances to entities. For
component instances, the configuration specifies from many architectures for an entity
which architecture to use for a specific instance. When the configuration for an entity-
architecture combination is compiled into the library, a simulatable object is created.

Xilinx Coregen VHDL simulation methodology uses the configuration statement to bind
the Coregen model to the top level design unit. The configuration declaration is provided
below:

library XilinxCoreLib;

CONFIGURATION stopwatch_cfg OF testbench IS

FOR testbench_arch

FOR ALL : stopwatch use configuration work.cfg_tenths;
END FOR,;

END FOR,;

END stopwatch_cfg;

Copy and paste this code to the bottom of the testbench.vhd file, below the “end
testbench_arch;” line. Save testbench.vhd and exit the editor.

UG102 (v1.1) July 21, 2000 www.xilinx.com 5
ModelSim VHDL Simulation Tutorial 1-800-255-7778

http://www.xilinx.com

S XILINX® : ModelSim VHDL Simulation Tutorial

RTL Simulation

In RTL simulation, the testbench.vhd file instantiates the top level file, stopwatch.vhd. The
testbench also passes stimulus for the system clock and other inputs. Additionally, the
testbench.vhd file contains a configuration statement. The configuration statement links
the Coregen tenths component to the testbench. Without this configuration statement, the
Coregen component will not simulate. To see further details on why the configuration
statement is needed for Coregen components, please refer to the Coregen user guide at
http://support.xilinx.com/support/techsup/journals/coregen/2.1i/docs.htm.

Copying Source Files to the Functional Simulation Directory

Copy the following files from the /mtivhdl_tut/src directory into the
/mtivhdl_tut/watch/func directory.

< smallcntr.vhd
e c¢nt60.vhd

e hex2led.vhd

= stopwatch.vhd
= statmach.vhd
= testbench.vhd
« decode.vhd

e rtl_sim.do

Starting ModelSim

If you are using the PC, invoke the simulator by selecting Programs — Model Tech —
ModelSim from the Start menu. For UNIX workstations, type the following at the prompt.

vsim -i &
Set the project directory using the File — Change Directory menu command and select
watch/func.

Creating the Work Directory

Before compiling the VHDL/Verilog source files, you must create a directory for use as a
library. Type the following at the ModelSim prompt.

vlib work

6 www.xilinx.com UG102 (v1.1) July 21, 2000
1-800-255-7778 ModelSim VHDL Simulation Tutorial

http://www.xilinx.com
http://support.xilinx.com/support/techsup/journals/coregen/2.1i/docs.htm

: ModelSim VHDL Simulation Tutorial i:X"JNX®

This action is echoed in the Transcript window as shown in the following figure.

T ModelSim EE/PIus 5.2e

ModelSim: vlih work

ModelSim» |

Figure 1: MTI Transcript Window

Compiling the Source Files

Since Xilinx Unified library components are instantiated within the VHDL source code, the
UNISIM simulation models must be provided. The following lines must be added in the
files watch.vhd and .

library unisim;

use unisim.vcomponents.all;
As a key point, the unisim library is for simulation only, and so these lines should be
commented out for synthesis.

The Vcom command compiles VHDL code for use with Vsim RTL simulation. Also, to
enhance simulation, ModelSim supports VHDL ‘93. The -93 switch is used to enable
support for 1076-93. Type the following at the ModelSim prompt.

vcom -93 -explicit smallcntr.vhd

vcom -93 cnt60.vhd

vcom -93 decode.vhd hex2led.vhd statmach.vhd
vcom -93 stopwatch.vhd testbench.vhd

The -explicit is used to compile smallcntr.vhd since there is a definition of “=""in the
std_logic_1164 and std_logic_unsigned libraries that are declared for the entity. The option
resolves resolution conflicts in favor of explicit function.

Invoke the Simulator
Type the following at the ModelSim prompt to invoke the ModelSim simulator.

vsim stopwatch cfg

Note: The file, rtl_sim_xilinx.do, runs the above commands; you can run it instead of
executing each command. The file is located in the src directory and you can copy it into
the watch/func directory. To execute the file, type the following at the ModelSim prompt.

do rtl sim.do

Optionally, you may launch the macro via the Macro — Execute Macro menu command.

Running the Simulation

To perform simulation using ModelSim, follow these steps.

UG102 (v1.1) July 21, 2000 www.xilinx.com 7
ModelSim VHDL Simulation Tutorial 1-800-255-7778

http://www.xilinx.com

S XILINX®

: ModelSim VHDL Simulation Tutorial

To view all the ModelSim debug windows, type the following.
view *

Add the signals from the selected region in the Structure window to the Wave and List
windows by issuing the following commands at the ModelSim prompt.

add wave *

add list *

In the Structure window, notice that VHDL design units are indicated by squares. You
can expand and collapse regions of hierarchy by clicking on the (+) and (-) notations.

The signals window lists the signals in the VHDL design unit currently

To run the simulation for a specified amount of time at the ModelSim prompt, type the
following.
run 20000 ns

The simulation output is displayed in the Wave window. You may have to zoom
in/out to view the waveforms.

In the Wave window, try adding or removing cursors with the Cursor — Add |
Remove menu command. When multiple cursors are drawn, ModelSim adds a delta
measurement showing the time difference between the cursors. The selected cursor is
drawn as a solid line and the values at the cursor location are shown to the right of the
signal name. All other cursors are drawn as dotted lines. If you cannot see the signal
value next to the signal name, select the bar separating the signal names from the
waveforms and drag it to the right.

Note: The above commands have been combined into a macro file called stim.do. You
can execute them at the ModelSim prompt.

wave — default

||I__I|||||||||||||||||||||||||||||||||||||||_|
Ed us E6 us Ea

52400 ns to 58210 ns

Figure 2: Simulation Output in Wave Window

Synthesizing/Implementing the Watch Design

This tutorial only covers VHDL RTL and Back-annotated simulation. Please go to
http://support.xilinx.com/support/techsup/tutorials/31i_tutorials_ph.htm and select

tutorials for synthesis and implementation to obtain the VHDL files needed for back-
annotated simulation.

While Implementing the design, make sure that the “MODELSIM VHDL” option is
selected for “Simulation Options” so that a back-annotated VHDL file compatible with
Modelsim is created by Xilinx.

www.xilinx.com UG102 (v1.1) July 21, 2000
1-800-255-7778 ModelSim VHDL Simulation Tutorial

http://www.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/31i_tutorials_ph.htm

: ModelSim VHDL Simulation Tutorial 2:)(||_|NX®

Timing Simulation
For VHDL tutorial, you need two files from the Xilinx core tools.
e time_sim.vhd
e time_sim.sdf

These files are created by the Xilinx Implementation tools, and are copied into the
implementation directory where all the place and route files are stored.

Now that the HDL netlist has been resolved into primitives, you need to modify the
testbench configuration. The Unisim library was referenced since the pre-synthesis netlist
contained instantiated Xilinx macros.

To perform timing simulation, follow these steps.

1. Copy time_sim.vhd, time_sim.sdf, and testbench.vhd to the following directory.
/mtivhdl tut/watch/time

2. Launch ModelSim, and navigate to the following directory.
/mtivhdl tut/watch/time

3. Create the work directory.
vlib work

4. View the testbench.vhd file and notice that there are two sections at the bottom.

The configuration statement is for RTL simulation. Comment out the configuration
statement by inserting “--” at the start of all the lines after the “end testbench_arch;”
line.

5. After editing the testbench.vhd, save the changes and exit.

6. Compile the VHDL source files and the testbench.
vcom time sim.vhd testbench.vhd

7. Read in the SDF file for timing simulation.
vsim -sdftyp uut=time sim.sdf work.testbench

Alternatively, select File — Load New Design. Highlight “testbench” in the Design
Unit window. Click the Add button. To apply the timing data, click on the SDF tab on
the Load Design window. Click the Add button. Browse and select for the
time_sim.sdf file. Type uut in the Apply to Region field and click the Load button.

8. View the necessary debugging windows by typing the following command at the
ModelSim prompt.

view wave signals source
9. View and add the signals of the design to the waveform window.

10. At the ModelSim prompt type.
run 20000 ns

11. Rightclick in the waveform window and zoom in. Another way to zoom in, press and
hold the middle mouse button and draw a square around the area to zoom in on. After
simulating, you can then zoom in and view the delay from the clock edge to the
TENSOUT, ONESOUT, and TENTHSOUT output change.

Note: The above commands have been combined into a macro file, time_sim.do, and
can be executed at the ModelSim prompt.

The MTI-VHDL Tutorial is now complete

UG102 (v1.1) July 21, 2000 www.xilinx.com 9
ModelSim VHDL Simulation Tutorial 1-800-255-7778

http://www.xilinx.com

	ModelSim VHDL Simulation Tutorial
	Design Description
	Before Beginning the Tutorial
	Tutorial Installation
	Tutorial Directory and Files
	VHDL Design Files
	Script Files
	Simulation Models for MTI

	Including CoreGen Components
	Creating the Tenths CORE Generator Component
	Instantiating the CORE Generator Module
	Using the configuration declaration

	RTL Simulation
	Copying Source Files to the Functional Simulation Directory
	Starting ModelSim
	Creating the Work Directory
	Compiling the Source Files
	Invoke the Simulator
	Running the Simulation

	Synthesizing/Implementing the Watch Design
	Timing Simulation

