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Abstract. Because of its apparent complexity, the discussion of Wigner rotation is usually
reduced to the study of Thomas precession, which is too specific a case to allow a deep understanding
of boost composition. However, by using simple arguments and linear algebra, the result for the
Wigner rotation is obtained straightforwardly, leading to a formula written in a manageable form.
The result is exemplified in the context of the aberration of light.

1. Introduction

One of the most puzzling phenomena in special relativity is the composition of boosts. When
one contemplates the form of an arbitrary boost [1], it becomes clear that the expression for the
composition of two generic boosts will be very complicated. As is known, the composition of
boosts does not result in a (different) boost but in a Lorentz transformation involving rotation
(the Wigner rotation[2]), Thomas precession being the example normally worked out in
textbooks [1,3–5]. In this example, one is composing two boosts along mutually perpendicular
directions; for small velocities a second-order approximation allows one to get a result that is
appropriate to understand the precession of the spin of an electron inside an atom.

Of course, the composition of two arbitrary boosts has also been studied in the literature
[6–8], but generally the treatments are too involved to capture the Wigner rotation easily.
Sometimes the papers are aimed at the understanding of certain properties of the Lorentz
group, instead of looking for a straightforward way to get the Wigner rotation, leaving in the
reader the impression that this topic is complicated, and cannot be comprehended without an
involved analysis. Moreover, the expressions are often difficult to use in practice, and the
concepts are frequently hidden behind the abundance of mathematics. The composition of
boosts and the Wigner rotation are therefore virtually absent from textbooks (save for the very
specific case of Thomas precession). One is then left with the impression that the subject is
subtle and difficult. Of course this is true, but not to the point of preventing its treatment with
simple mathematical tools.

In this paper the aim will be different. Our prime interest is in the Wigner rotation; we
choose the composition of boosts as a specific issue, because some characteristics of boosts are
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highlighted particularly well, the power of linear analysis is demonstrated at its best, and, of
course, because it is interesting in itself. The mathematical tool that we will use is simple linear
algebra. After all, boosts are linear transformations. However, the key point is that boosts are
symmetric linear transformations. This simple property will allow us to effortlessly compute
the Wigner rotation (see equation (8) below). Moreover, the understanding of the reason that
makes the boosts symmetric will reveal some simple, basic facts that are often passed over in
textbook treatments. A second goal of this paper is to present simple formulae for computing
the Wigner rotation. Their simplicity does not reside in their explicit form; the final result will
always be messy. However, we want to give equations that are operationally simple in order
that the computation of the Wigner rotation should be a simple ‘plug-and-play’ procedure.

2. Composition of boosts

We will start by considering the composition of two boosts along mutually perpendicular
directions. Before embarking upon calculation, one should be sure about what one is looking
for: one is wondering whether the composition is equivalent to a single boost or not. There
are various ways of understanding this topic, depending to a large degree on the particular
expertise and taste of the reader. For the moment we will content ourselves with a mathematical
explanation. In section 3, we will clarify the meaning of the Wigner rotation by a physical
example concerning the aberration of light.

One could give an answer to the question by starting from the fact that boosts are
represented by symmetric matrices. On the one hand one knows that a boostBx along the
x-axis is actually represented by a symmetric matrix, and on the other hand one could get
a generic boost by performing an arbitrary spatial rotation:Bx −→ RBxR−1. Since the
rotations are orthogonal matrices, then a boost along an arbitrary direction is also represented
by a symmetric matrixB = RBxRT (BT = B), whose form can be found in the literature [1].
This symmetry can also be regarded as a reflection of the fact that boosts leave four independent
directions in spacetime invariant: namely, (i) they do not modify the light-cones; on the light-
cone there are two independent directions, belonging to light-rays travelling back and forth
along the boost direction, that remain invariant (see appendix A); (ii) in addition, the spacelike
directions that are perpendicular to the boost direction are also left unchanged (a further two
independent directions). Then, boosts have four independent real eigen(four)-vectors, and
their representative matrices must be symmetric (i.e. diagonalizable). In contrast, a (spatial)
rotation changes the directions belonging to the plane where it is performed.

Since the product of matrices representing boosts is non-symmetric (unless both boosts are
parallel), then one can answer that the composition of two boosts is not, in general, equivalent
to a single boost. So we are compelled to analyse the result of the composition of two boosts
as being equivalent to the composition of a boost and a rotation. Again the symmetry of the
boosts will allow us to identify the rotation in the result.

2.1. Composition of mutually perpendicular boosts

Let there be two boost matrices along thex andy directions:

B(x) =


γ1 −γ1β1 0 0

−γ1β1 γ1 0 0

0 0 1 0

0 0 0 1

 (1)

B(y) =


γ2 0 −γ2β2 0

0 1 0 0

−γ2β2 0 γ2 0

0 0 0 1

 . (2)
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The product of these two matrices yields

B(y)B(x) =


γ2 0 −γ2β2 0

0 1 0 0

−γ2β2 0 γ2 0

0 0 0 1




γ1 −γ1β1 0 0

−γ1β1 γ1 0 0

0 0 1 0

0 0 0 1



=


γ2γ1 −γ2γ1β1 −γ2β2 0

−γ1β1 γ1 0 0

−γ2γ1β2 γ2γ1β2β1 γ2 0

0 0 0 1

 (3)

which is non-symmetric, as anticipated. Note that if one wants to speak about inertial systems,
there are three of them here: the initial system from whichβ1 is defined, the second which is the
result of applying the first boost and from whichβ2 is measured, and the final one obtained as
a result of making the second boost. These systems are all taken with their spatial axis parallel
to the previous one. These considerations are not important in working out the computations,
but are crucial when one wants to interpret them physically. So, we will write equation (3) as
the product of a boostBf and a rotationR†:

B(y)B(x) = RBf (4)

where

R =


1 0 0 0

0 cosθW sinθW 0

0 − sinθW cosθW 0

0 0 0 1

 . (5)

Therefore

Bf =R−1B(y)B(x) =


1 0 0 0

0 cosθW − sinθW 0

0 sinθW cosθW 0

0 0 0 1




γ2γ1 −γ2γ1β1 −γ2β2 0

−γ1β1 γ1 0 0

−γ2γ1β2 γ2γ1β2β1 γ2 0

0 0 0 1



=


γ2γ1 −γ2γ1β1 −γ2β2 0

(−γ1β1 cosθW +γ2γ1β2 sinθW) (γ1 cosθW−γ2γ1β2β1 sinθW) −γ2 sinθW 0

(−γ1β1 sinθW−γ2γ1β2 cosθW) (γ1 sinθW +γ2γ1β2β1 cosθW) γ2 cosθW 0

0 0 0 1

.
(6)

The angleθW can be obtained by demanding the symmetry of the matrixBf :

−γ2 sinθW = γ1 sinθW + γ2γ1β2β1 cosθW (7)

i.e.

tanθW = −γ2γ1β2β1

γ2 + γ1
(8)

or

sinθW = −γ2γ1β2β1

γ2γ1 + 1
cosθW = γ2 + γ1

γ2γ1 + 1
. (9)

† One could also opt forB ′f R. The argument is the same; note also thatRBf = B ′f R impliesBf = RTB ′f R.
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By replacing these values, one finds that the boostBf is

Bf =



γ2γ1 −γ2γ1β1 −γ2β2 0

−γ2γ1β1

(
1 +

γ 2
2 γ

2
1 β

2
1

γ2γ1 + 1

)
γ 2

2 γ1β2β1

γ2γ1 + 1
0

−γ2β2
γ 2

2 γ1β2β1

γ2γ1 + 1

γ2(γ2 + γ1)

γ2γ1 + 1
0

0 0 0 1


(10)

which is a boost along some direction in thex–y plane. In order to find this direction, we will
look for the direction in thex–y plane that is left invariant by the boostBf , i.e. the direction
that is orthogonal to the direction of the boost. Since the vectors that are orthogonal to the
direction of the boost do not suffer changes (either in direction or magnitude), one can write
Bfw = w for such a four-vector, or

γ2γ1 −γ2γ1β1 −γ2β2 0

−γ2γ1β1

(
1 +

γ 2
2 γ

2
1 β

2
1

γ2γ1 + 1

)
γ 2

2 γ1β2β1

γ2γ1 + 1
0

−γ2β2
γ 2

2 γ1β2β1

γ2γ1 + 1

γ2(γ2 + γ1)

γ2γ1 + 1
0

0 0 0 1




0

wx

wy

0

 =


0

wx

wy

0

 . (11)

As a consequenceγ1β1w
x + β2w

y = 0, which can be read by saying that the vector
wxx̂ + wyŷ, in thex–y plane, is orthogonal to the vectorγ1β1x̂ + β2ŷ. Thus this last vector
is in the direction of the boostBf . In order to identify the velocity of the boostBf , one
could consider the displacement four-vector between two events that happen at the same place
in the original coordinate system:1 = (1τ, 0, 0, 0), 1τ being the proper time. Since
1→ Bf1, in the boosted coordinate system the time interval between the events isγ2γ11τ .
From the known relation between proper time and coordinate time, one obtains the result
that the gamma factor (in other words, the velocity) of the boostBf is γf = γ2γ1. Then
β2
f = 1− γ−2

f = 1− γ−2
2 γ−2

1 = 1− (1− β2
2)(1− β2

1) = β2
1 + γ−2

1 β2
2. This result, together

with the direction of the boost, completes our understanding of the transformationBf †.
In summary, the composition of a boost along thex axis with velocityβ1 followed

by a boost along they axis with velocityβ2 is equivalent to a single boost with velocity
βf = β1x̂ + γ−1

1 β2ŷ (the relativistic composition of velocities), followed by a rotation in the
x–y plane by an angleθW = −arctan

(
γ2γ1β2β1/(γ2 + γ1)

)
, i.e.

B(y)(β2) B(x)(β1) = R(θW) Bf (12)

where

βf = β1x̂ + γ−1
1 β2ŷ (13)

and as before

tanθW = −γ2γ1β2β1

γ2 + γ1
. (8)

As a preparation for the next section, note that we can read (12) backward to note that any
boostB in thex–y plane can be decomposed into two mutually perpendicular boosts followed
by a rotation:

B = R−1 B(y) B(x). (14)

† Alternatively, the velocity of a boostB(β) can be straightforwardly read from the first file of its matrix. Indeed, in
order that the time transformation adopts a form manifestly invariant under spatial rotations,ct ′ = γ (ct − β · r), the
first file must be(γ,−γβ).
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2.2. Composition of arbitrary boosts

Equipped with the previous understanding of the composition of two perpendicular boosts, let
us tackle the general case. A generic composition of boosts can be seen as the composition of
a boostB(a) of velocityβa, and a second boostB of velocityβ = β‖ + β⊥, where‖ and⊥
mean the parallel and perpendicular directions with respect to the first boostβa. Since the
Wigner rotation is a geometric result (it only depends on the velocities of the boosts and
the angle between them), one is free to choose thex–y plane as the plane defined by both
velocities, thex axis as the direction‖, and they axis as the direction⊥. Although a generic
composition of boosts could demand formidable algebraic manipulations, we will be able to
get the result by using only the results of the previous section. The key to attaining our goal
will be the decomposition (14). In fact, the main difficulty comes from the fact that the second
boost has componentŝx and ŷ. Our first step will consist in rewriting the second boostB
as a composition of a boost alongx̂ and another boost alonĝy. This was done formally at
the end of the preceding section. We can thus use equation (14) to regard the second boost
B(β = β‖x̂ + β⊥ŷ) as a product of a rotation and two mutually perpendicular boosts, i.e.

B(β) = R−1(φ) B(y)(β2ŷ) B(x)(β‖x̂) (15)

where

β2 = γ‖β⊥ (16)

in order that the relativistic composition of the velocitiesβ‖x̂ andβ2ŷ gives backβ = β‖x̂+β⊥ŷ.
Thenγ2 = γ γ−1

‖ , with γ = γ (β), and

tanφ = −γ2γ‖β2β‖
γ2 + γ‖

= − γ γ‖β⊥β‖
γ γ−1
‖ + γ‖

. (17)

At first glance it would seem to the reader that we are going backward, decomposing the
boosts instead of composing them. The advantage of doing this will become clear in a few
lines. We can now turn to the composition ofB(β) andB(a)(βax̂):

B(β) B(a)(βax̂) = R−1(φ)B(y)(β2ŷ) B(x)(β‖x̂) B(a)(βax̂)

= R−1(φ)B(y)(β2ŷ) B(x)(β1x̂) (18)

where

β1 = β‖ + βa
1 +β‖βa

(19)

denotes the velocity corresponding to the composition of two parallel boosts (thenγ1 =
γ‖γa(1 +β‖βa)). Note that we combined the two consecutive boosts in thex̂ direction using
the well known velocity addition formula. In this way one falls back to the composition of
the two remaining mutually perpendicular boosts. At this point, let us recall our objective:
we want to regard the compositionB(β) B(a)(βax̂) as the product of a rotationR(θW) in the
x–y plane and a boostBf . Then

R(θW)Bf = B(β) B(a)(βax̂) = R−1(φ) B(y)(β2ŷ) B(x)(β1x̂) (20)

which means

R(θW + φ)Bf = B(y)(β2ŷ) B(x)(β1x̂). (21)

The good news is that we have already solved this expression in the previous section. The
matrixBf is that of (10) with the velocities of (16) and (19). As shown there,Bf is a boost
whose velocityβf comes from the relativistic composition of the velocitiesβ1x̂ andβ2ŷ:

βf = β1x̂ + γ−1
1 β2ŷ = β‖ + βa

1 +β‖βa
x̂ +

γ−1
a β⊥

1 +β‖βa
ŷ (22)
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i.e.βf is the relativistic composition ofβa andβ. The angle(θW +φ) in (21) must satisfy (8):

tan(θW + φ) = −γ2γ1β2β1

γ2 + γ1
= − β⊥(β‖ + βa)

γ−2
‖ γ−1

a + γ−1(1 +β‖βa)
≡ ζ. (23)

Since tan(θW + φ) = (tanθW + tanφ)/(1− tanθW tanφ), one concludes that the Wigner
rotation for the compositionB(β = β‖x̂ + β⊥ŷ) B(a)(βa = βax̂) is a rotation in the spatial
plane defined by the directions of both boosts, whose angleθW is given by

tanθW = ζ − tanφ

1 + ζ tanφ
. (24)

Recall that‖ and⊥ in these equations mean the parallel and perpendicular directions with
respect to the first boostβa, in the spatial plane defined by both boostsβa andβ. The velocity
β = β‖x̂ + β⊥ŷ is measured by an observer at rest in the system defined by the first boostβa.
Note thatζ andφ are readily obtained from the data, namelyβa, β|| andβ⊥ via equations (23)
and (17).

3. Aberration of light

We will show an application of Wigner rotation in the context of the aberration of light (i.e.
the change in the direction of propagation of a light-ray produced by a boost). For simplicity
we shall work with two mutually perpendicular boosts. Let us choose thex axis to coincide
with the propagation direction of the light-ray. A first boostB(x)(β1) leaves the propagation
direction invariant, while a second boostB(y)(β2) changes that direction according to the law
of the aberration of zenithal starlight:

δc = arccosγ−1
2 (25)

whereδc is the angle between thex direction in the original coordinate system (the light-ray)
and thex direction after the composition. This isnot the aberration angle due to a boost with
the relativistically composed velocityβf = β1x̂ + γ−1

1 β2ŷ. The Wigner rotation provides the
difference between these two angles.

In fact, in appendix B the aberration angle for a boost with velocityβf = β1x̂ + γ−1
1 β2ŷ

has been computed; the result is

δ = arccos

[(
β2

1 + β2
2(1 +β1)(γ

−1
2 γ−1

1 − β1)
)

(β2
1 + γ−2

1 β2
2)

]
. (26)

The difference between equations (25) and (26) is due to the fact that the newx direction in
the two processes is not the same. So the boost associated with the relativistically composed
velocityβf must be completed with a rotation, in order to yield the aberration coming from
the composition of boosts. The rotation angleδ− δc is the Wigner angle (8). To make contact
with our previous method, what we are saying is that in the first case

B(y)(β2)B(x)(β1)


c

c

0

0

 = γ1γ2(1− β1)


c

c cos(δc)

c sin(δc)

0


while in the second case

R(θW)Bf (β1x̂ + γ−1
1 β2ŷ)


c

c

0

0

 = R(θW)γ1γ2(1− β1)


c

c cos(δ)

c sin(δ)

0
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= γ1γ2(1− β1)


c

c cos(δ − θW)

c sin(δ − θW)

0

 .
SinceB(y)(β2)B(x)(β1) = R(θW)Bf (β1x̂ + γ−1

1 β2ŷ), thenδ − θW = δc as stated above. The
multiplicative factorγ1γ2(1− β1) is the Doppler shift.

4. Conclusions

Our argument for working out the Wigner rotation can then be given in a nutshell as follows.
First, a boost along thex direction is manifestly symmetric. One can also understand this
feature by noting that there are two null eigenvectors along the null cone (with eigenvalue
equal to the Doppler shifts) and two trivial ones (along they and z axes). Now, since a
generic boost is obtained by a rotation of the axis andR−1 = RT (i.e.R is orthogonal), the
matrix representing a generic boost stays symmetric (or, equivalently, it will preserve its four
eigenvectors with real eigenvalues). The symmetry allows us to easily compute the Wigner
angle in the case of the composition of two perpendicular boosts. Now in the generic case,
the problem can be cast in a form identical to the previous one, after carrying out a proper
decomposition of the boosts into two mutually perpendicular directions. Thus the answer is
written without any difficult algebraic computing.

Physically not intuitive due to the lack of any Galilean analogue, Wigner rotation has been
relegated to some corner of knowledge. Although Wigner rotation is challenging both in terms
of mathematical skill and physical intuition, its computation is nonetheless within the reach
of elementary analysis and it is an instructive way to apprehend the subtlety inherent in the
subject.

Appendix A. Eigen-directions of a boost

We will show the two null eigen-directions of a boost explicitly. Let the boost be in the
x̂ direction; dropping the two invariant spatial directionsŷ and ẑ, and working just in the
t–x plane, the orthogonal transformation required is

OBx(β)O
T = 1√

2

(
1 −1

1 1

)(
γ −γβ
−γβ γ

)
1√
2

(
1 1

−1 1

)
=
(
γ (1 +β) 0

0 γ (1− β)
)
. (A1)

The coordinate change is simply

u = 1√
2
(ct − x) (A2)

v = 1√
2
(ct + x) (A3)

which are the so-called null coordinates. The eigenvalues associated with the null directions
are the relativistic Doppler shift factors (this is, of course, not a surprising result). This change
of coordinates is not a Lorentz transformation, because it does not leave the Minkowski metric
invariant:

1

2

(
1 −1

1 1

)(−1 0

0 1

)(
1 1

−1 1

)
=
(

0 −1

−1 0

)
. (A4)
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This is evident when we look at the transformation on a Minkowski diagram: it amounts to a
rigid rotation of 45◦ in the anticlockwise sense in space–time instead of the famous ‘scissor-
like’ picture of the Lorentz transformation. This can be traced to the fact that the proper
Lorentz group is isomorphic toO(1, 3) instead ofO(4). The matrixO in (A1) belongs to the
groupO(4).

Appendix B. Computation of the aberration angle

To begin with, we will recall the aberration angle due to a boostB(x)(β). If the light-ray
propagates in the direction̂n = (cosψ, sinψ, 0), the transformed direction̂n′ is obtained
by applying the usual Lorentz transformation to the velocityu = cn̂, which transforms to
u′ = cn̂′:

n̂′ =
(

cosψ − β
1− β cosψ

,
sinψ

γ (1− β cosψ)
, 0

)
. (B1)

The aberration angle is

cosδ = n̂ · n̂′ = 1

1− β cosψ

[
cosψ(cosψ − β) + γ−1 sin2ψ

]
. (B2)

In getting this result, thex-axis was chosen in the direction of the boost because of practical
reasons. But, of course, the aberration angle depends only on the norm ofβ and the angleψ
betweenβ and the light-ray.

Let us now study the problem proposed in the body of the text. Let there be a boost with
velocity βf = β1x̂ + γ−1

1 β2ŷ, and a light-ray travelling along thex axis. Then, using the
substitutions

cosψ = β1

βf
= β1√

β2
1 + γ−2

1 β2
2

sinψ = −γ
−1
1 β2

βf
= − γ−1

1 β2√
β2

1 + γ−2
1 β2

2

in (B2) (the minus sign is due to the fact that the angleψ is measured in the anticlockwise
sense fromβf to n̂), after some algebra one obtains

cosδ = β2
1 + β2

2(1 +β1)(γ
−1
2 γ−1

1 − β1)

β2
1 + γ−2

1 β2
2

(B3)

i.e. in the boosted system the angle between the light-ray (thex direction in the original
coordinate system) and the boost direction isψ ′ = ψ + δ.

The result (B3) can be compared with that corresponding to the boost composition
B(y)(β2)B(x)(β1). The first boost does not produce aberration, since it has the same direction as
the light-ray. The second produces an aberration that is a particular case of (B3) withβ1 = 0:

cosδc = γ−1
2 . (B4)

Of course, the same result is recovered from (B2) by replacingβ = β2 andψ = π/2.
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