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ABSTRACT

In this statistical-thermodynamical approach to strong inter-
actions at high energies it ic assumed that higier and higher re-
sonances of strongly interacting particles occur and take part in
the thermodynamics as if they were particles. For m —» o these
objects are themselves very similar to those which shall be des-
cribed by this thermodynamics., Expressed in a slogan: "We describe
by thermodynamics fire-balls which consist of fire-balls, which
consist of fire-balls, which ...". This principle, which could be
called "asymptotic bootstrap",leads to a self-consistency require-
ment for the asymptotic form of the mass spectrum. The equation
following from this requirement has only a solution if the mass
spectrum grows exponentially:

5/

p(m) ——— const.m

2 exp()
m— © A/

]

T, is a remarkable gquantity: the partition function corresponding
to the above p)(m) diverges for T — TS. To is therefore the
highest possible temperature for strong interactions. It should -
via a Maxwell-Boltzmann law - govern the transversal momentum dis-—
tribution in all high energy collisions of hadrons (including e.m.
form factors, etc.). There is experimental evidence for that, and
then T, is about 158 MeV ( %1012 oK), With this velue of T,
the asymptotic mass spectrum of our theory has a good chance to be
the correct extrapolation of the experimentally known spectrum.

Another consequence is the prediction that the elastic ampli-
tude A(s,t) should decrease as AJeXp(—pl‘/2To) for any non-zero
fixed scattering angle and & —> ®.

For astrophysics the present theory puts some doubt on the.
neutron-star model for the interior of collapsing stars; at the
same time it suggests a straightforward improvement.
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I. INTRODUCTION

1)

Recently, the statistical model of Fermi has been applied to
large angle elastic 2), 3) and exchange 4) scattering with a rather
unexpected success. Roughly, the result can be stated as follows: if
one calculates with the (non—invariant) statistical model the probabili-
ties Pj for all channels j of the reaction p+p —> "channel j",

then one finds for c.m. energies from 2 to 8 GeV the numerical formula

— 330(E-2 _ .
Fg _ ez ) zﬁ) in GQE/ (1)
ZEZ‘FQ P

Zaﬁr units are:fi =c =%k (Boltzmann's constant) = 147

where P denotes the elastic channel., From this (dCT' /da))
° 2), 3), 4) ot

900 was

calculated in Refs.

The natural question arose whether this numerical result could

be understood. A number of authors considered the asymptotic behaviour

of sums over phase--space integrals 5-1) or treated the question by

thermodynamical methods &), 9)u

5-7)

.The analytic treatment ' resulted always in

R ~aE”
ZPNQ_ for E — <o , (2)
- 4

3

where X = 1/2, 2/3, 3/4, 1 according to various assumptions about

details,
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2.

It turned out that < =1 is impossible under the usuel'assumption

that the particles are indistinguishable. If one omits, however, the factor

1/n! in front of the phase space integrals then &' =1 results. This was s
=
first pointed out by Auberson and Escoubes > for the non-invariant,
6
and later by Vandermeulen ) for the. invariant phase space. .

. Omitting the factor 1/n! corresponds to considering the particles as
beihg distinguishable. This is not altogether senseless, since in reality there
are so many different strongly interacting particles (henceforward: hadrons)
involved in the high-energy processes that the average occupation numbers
in the numerical calculations leading to (1) remainea below ~ 1 (where,
of course, the different charge and spin states have to be counted separately);
In this situation the particles behave as if they were distinguishable.
Responsible for this - and presumably for the actual behaviour of strong
interactions at high energies - is'the large number of possible particle
states. Indeed, the number of particles and resonances seems to grow very
fast as a function of their mass 10). Since only a few of them are stable
against strong decay‘and in principle no criterion exists to distinguish
between a resonance (which decays strongly) and the so-called fire~balls
(which seem to be observed at very high energies) "e'shall assume that the
fire-balls and the low-lying resonances are basically one and the same
thing, namely, excited hadrons. Thus, we:may speak of a mass spectrum of
hadrons, which has at low masses a few discrete lineg; between and above
these some rather sharp resonances; for larger mass values more and more
resonances which become -gradually broader until, finally, there are so many
that the width becomes comparable to their spacing and a continuous epectrum
of fire-balls results. Strictly speaking the fire-balls, which we preseﬂtly <
have in mind and which are counted by a mass spectrum, are not exactly
the same as those actually observed: the former ones are states with well- 5
defined quantum numbers (except the mass itself) whereas the latter ones can

be mixtures of states within a mass interval A m.
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A high-energy collision will then be visualized in this paper as
follows: in the first instant in a certain volume VO a thermodynamical

*)

thermodynamics of an unlimited and undetermined number of more or less

"equilibrium" is established which will be described by statistical
excited hadrons, which then leave the region of interaction and decay
(strongly) through a number of steps into their "stable" forms K, T,

N, ¥, etc,

The essential idea is now the following one: the thermodynamical
system consisting of more or less excited hadrons is itself nothing else
than a highly excited hadron (because in the sense of our above statement
we have no way to distinguish between a resonance, a fire-~ball and our
thermodynamical system - except that they differ in the degree of excitation)a

This leads then to a self-consistency problem:

* let §~(m)dm denote the mass spectrum of hadrons, i,e., the number

of (more or less) excited hadrons with mass between m and mk-dm

* and let Cf(E)dE denote the number of states between E and E+dE

of our thermodynamical system.

Then, if there is no essential difference between excited hadrons and our
thermodynamical system, that is: if excited hadrons can - for very high
excitation (nfﬂ#oo) - be described themselves by the same formalism, then
the two functions g’(x) and O (x) should asymptotically approach each

other for x—> .

*)

The word equilibrium will turn out to have a meaning which is somewhat
different from the usual one and which is better expressed replacing

"equilibrium® by "constant temperature". See footnote on page 25.
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This self-consistency condition (aeymptotic bootstrap) may or may
not be accepted as a statement about neture, it may or may not be congidered
intuitively obvious - we shall, in this paper, adopt it as a working

hypothesis and find out its consequences,

It will be shown that the functions ? (x) anda T (x) must grow
exponentially. An immediate consequence is the existence of a highest
possible temperature TO, which then should govern practically all high-
enérgy‘phenomena in which hadrons take part., Once this tempersture is
(nearly) reached - in other words: for collisions of sufficiently large
total energy and momentum transfer - the reaction will be described by
thermodynamical and conservation laws., Neither the details of the inter-
action nor the structure of the interacting hadrons will menifest them-

selves anymore when both energy and momentum transfer become large.

The existence of a highest temperature can be understood by ob-
serving that the density T (E) of states of a system grows already
very fast (almost exponentially) if only one kind of particles is available.
This growth expresses the fact that by increasing the kinctic energies of
the particles so many new cnergy levels in the box Vo become available.
But if there is the possibility to create ¢ver new kinds of particles and
if the density of particle states (other than kinetic energy) £TOoWsS very
fast, then the system will answer an increase of cnorgy by increasing both
the kinetic cnergy (~v tcmperature)'and:the number of kinds of particles.
It then happens that for an cxponential growth of ? (i) the system uses
up the energy to increase the tempcrature and the number of particles
only up to some temperature F%éTO; but when TO is approached it becomes
easier to create new particles than to increase the temperature; ,53 (m)
offers more possibilities than the increase of the number of momentum
states does 9). Example: for an idcal gas (with fized partici@ number)

the temperature T grows proportionally to the cnergy E; for the light

65/166/5



RCHI VES

ERRATA

STATISTICAL THERMODYNAMICS OF STRONG INTERACTIONS AT HIGH ENERGIES

R. Hagedorn
CERN - Geneva
65/166/5-TH. 520

Page 3, 1line 17 add: (E is always the totel cnergy including

the rest masses of the particles).

Page 21, 1line 9 should read: This behaviour implies that we not only

can calculate E as a function of T as usual,
but also can conversely say that, ....

e s

Page 27, 1line 4 replace /1,¢,= \/pf+m2 >m by /M, = \/ pf+m2 Sy ...

Page 34, line 20 : should read: the model of massless distinguishable

particles (accidentally ?).

Page 53, 1line 16 : should read: ..... which will determine the behaviour
of the integral, because the main contributions.to the
integral come from a region around m Xz mo, where
the integrand has a maximum; for the functions con-
sidered, not only m, —> 0, but even sm -3 0
when S = O+. Hence, the asymptotic form of Q(ms)

for large argument is valid.

equation (A4,20) should read: h(z) = ;Ej coen
&=

Page 66, 1line 6

line 10 should read: (not up to k = @, as the series

(A4.18) need not converge).
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quantum gas, where particles can be created, the temperature increases only

/4

as T nu . In our case, wherc the numbcr of available types of

particles itself increases with the energy, T - constant,

It should be noted that we do not make the a priori assumption
that the particles be distinguishable; we shall start from the proper quanium
statisfics where equal particles are indistinguishable. It turns out,
however, that after imposing the self-consistency condition on ? (m) and
o (E), the system behaves very similarly to a model system in which all

particles are distinguishable.

In Section II we derive the basic statistical formula; Section III
discusses the self-consistency condition; Section IV gives the physical
interpretation and Section V summnrizes the results and contains some

speculations and open prohlems.
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II, THE PARTITION FUNCTIOW

We deal with a system of particles enclosed in a volume VO and
. \ o
kept at constant temperature T (canonlcal encsernble). The number of

particlés of each kind is not limited. We label by ¢& the possible

N

momenta in the cubical box V  and by & the kinds of particles.
. 0 I

Then the partition function becomes

<
N ) [ LS5 0 ] _
Z( o, T 5%‘0 Tig R 1 (3)
. 9 "L-
E"‘ﬁ = P"L + ftvtﬁ)
The sum (V) goes over all sets (matrices) with matrix elements
Vd(b =0y 1y 25 veey 03 \\)o{p is the number of particles of the kind {&

having momentum . Thus, one particular matrix V describes fully one

-
R
guantum state of the system. The contribution 1 of the ground state
(no particle present: \Jd,,:, = 0) has been subtracted, Since the
relevant physical quantities are obtained from logarithmic derivatives
of Z(V ,T) this is of no other consequence than to ensure that Z(V ,T)
can be written as the Laplace transform of a positive function, namely

the density of states o7 (B) ), which then has no J function behaviour

at E = 0.

We write with X .= exp(- td[ﬁ /T)

!v

[+ /VT) > T « Vas

(v) cxp oD
N V
< UV < Va < ol
~\\Z~ X“ >(2“ X:z J”"(L Xa!b )“”
\’n \3&2 ‘794,5 )
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Let us distinguish bosons (1label FB ) and fermions (label LP ), Then

9&#» =0, 1, 2, esey ® whereas q;% =0 or 1 only. Thus
267)- T, Thon) - 1
A " wg

f»% [HZ(\/,,,T)] = *%&g (1- o(P) t 2~ &Qg (Hx“‘f)

We replace (without any consequence for later conclusions)

(4)

and obtain

Log [1+2(v,T)] =

=4 o

2:(1 Jf olfo [ (oi/m ﬁ(”)&‘é{ (1+ Xom )_~ SJB(m) fwg ('(—XMV )]]

Expanding the logarithms yields

2, 7 "
A}?f [!+Z(V.,,T) = j\—/{%« 'Z - Jd}odfm ([f@[m,), (- )mfF(“”)]' Pz. Xi,m]

XP"”” = éxp (-% \/gozwml) < 1 (5)

(no hadrons with m = 0 exist).
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For the combined mass distributions we write

’g("“‘) for n odd

g)g(w) _ (_;ﬂg (m) = ‘)}’AM}JE

Ae(fm] for n even,

11)

The integral over p can be solved

[=6)

gdlo Plup [.1}_1_‘_\/},3“@,“;{] _ __rm"‘fﬁ_{ [ K,,(g)]: i?)Kz(ﬁ)

TR

4= T

K, 2(y) are modified Hankel functions. Finally
9

Lw%j_HZ ]

)
= QOT “7%’1 J(J//mrn “m, K ("“"’")d’m
n*
o

S

Indeed, for T —> 0 the r.h.s. vanishes, hence Z(VO,T - 0) = 0.
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TII. THE SELF-CONSISTENGY CONDITION

1) Statementrof‘the Problem

Now we impose the condition (explained in the Introduction) that
in the limit m--%»  the highly excited hadrons (flre—balls) should be
themselves describable by statistical thermodynamics, i.e., by Eq. (8)

and its conseguences.,

To tormulate this condition, we observe that

N
-f’(:
~

{]
Z,

f‘ Z(i S?"‘* ) G () el } -1 (9)

can be written in another form

) -

Z Vo, T) = ﬂ s(e)e T dE (10)

Irm

where ﬁT(EDdE counts the number of states between E eand IE+dE. . That
such & representation is poseible follows from the physical meaning of

our equations /ccmntre (il/ It is, however, also a consequence of rather
‘general theorems on Laplace transformations. As some of our following
arguments will be bascd on such theorems, we shall adapt our notation a

little by introducing the variable

1 _ (11)
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10,

without changihg the function symbols. Then

e 0
S N TR Y2 Vi, | :
Z(s) = exp 5o g S [l g osn) g lwin)du f~ 1
o | Bl 2
_ 7 - (‘L—- ) 1?
= { Ei,\? CF(Eﬂ)cif? - ~ ' (12)
o

We express our self-consistency condition in the rather weak form

f@%, ¢(x) _~¢~ @}§cT(X) C fer X=> 00 (13)

We shall be able to show that (13) can be achieved., From the physical
point of view (13) seems rather natural, as log g(E) is essentially

the entropy of our system. Since we are trying a thermodynamical des—
cription in which not only the conservation laws but also the details of
the interaction are disregarded, we should perhaps not require more than
the asymptotic equality of the entropies, We should, indeed, rather

expect that g’(x) and O (x) differ by some algcbraic factor in x,

The reason is that CT(E) counts all the states of the system enclosed

in the box Vo, ~among them, for instance, also states of very large total
angular momentum which we would not like to interpret to be "fire-balls"
and which therefore should not be counted in g?(m), but which cannot be
excluded from Z unless we build in explicitly some restrictions
(conservation laws, centrality condition 4>). The "particles" counted by
? (m) should, however, be objects which are not simply n particle states
with a total invariant mass m, but which still show some properties which

are reminiscent of what one calls a "compound system" in nuclear physics
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and "fire-balls" in cosmic ray physics. A qualitative way to classify such
objects would be to say that they are those which could have been generated
by a central collicion of two appropriate "elementary" particles (low-lying
states of our family of hadrons). The total c.m. energy of such a generating
collision should be just equal to m, and if w is large then it comes
mainly from the kinetic energy of the incoming particles., The condition

that a collision produces a compound system, i.e., has been central, can be
stated in terms of a simple model(4> by saying that the total angular
womentum of such a compound system must not exceed Z ~ 5 to 7, independent
of the primary energy, that is; independent of its total mass, This can

also be formulated by saying that of all the states which can be reached from
the initial one, only the fraction 1/5 2 ~t (1/m2) can be considered to

be of the compound type 1;ée Ref, 4), Eq. (5);3 K = Lorentz factor of the
c.m.; for two equal initial particles with mass mo one has 5’ = m/2md;7,
We thus might expect that ? (x) - counting only such compound states -
cous.d be smailer than ¢ (X) by a factor of the order 1/X2 —.in ény

case, we should tolerate factors of this kind. In the weak form (13) of

our self-consistency condition such factors are permitted.

2) Exclusion of Non-Exponential Sclutions

We consider now the mathematical problem given by Egs. (12) and
(13). In what follows we shall quote theorems on Laplace transformations

N\
, J . . - . .
from G. Doetsch s our notation is explained in Appendix 2,

1)

The modified Hankel function KZ(X) has the properties !

[eee (84.10)/
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12.

e 0 A . e y
K 0) 772, Ve (+84004%); lela
” (14)
. 2 ‘ ' 2 0.~ X :
K, (x) 0 et O(x &"‘"z>
Thus the integrand in {12) becomes
Q(n«;rm)ml Kz(fnwsv] —> (—5—52 elmmy) at M —0
S , | | A (s)
o = SR op ) - mus | -
g(““}f")(mz Ky(mms ) — \(g &”\T%il)e at =0

No problem arises at the lower limit of the integral. At the upper limit

[=Ya)

Srw&K(M’MS‘)?(WJM)AM £ 0 for Ke s > 3,
p 25 (16)

ir elm;m) = 0 ( exp S,m )

In particular, all integrals (n =1, 2, 35 e oo) converge if the first

(n = 1) does so., In Appendix 1 we show
* if the integral with n =1 converges, the sum
in (12) converges.

* if the integral with =n = 1 does not converge, (17)
but the one with n = 2 converges, then the sum

from n =2 to @ converges.

. . . o -+
This will enable us later, when we discuss divergences for s —> Sy to

disregard all terms of the sum except the first one.
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Next we observe by going back to Eqg. (3) - replacing there 1 /’I‘

by s - that 7(s) is completely monotonic for s > 0O, i.e,.,
v .
m d .
&) 7=, Z(5) = O for S > O (18)
dam

This property is not so obvious in the form (12), since Af’ (m) might

be negative, According to Bernstein's theorenm 13) every completely
monotonic function can be renrevented by a Stieltjes-Laplace integral

/tne second line of Hq. (12__/ ) with G (E) > 0. This is physically
obvious but mathematically provides a firm basis to all our considerations -

whatever ?(m) 2 0 may be.

Assunie now we start with some knowledge of §> (m), say with
? (m) = 3¢Or (m—mﬂ, ), and neglect the rest, In that case we find for

s*“3‘0+

;1a¥+
f (19)

Z(s) — exp | =

a strongly diverging function., One can calculate the corresponding T (E)
and find,it growing like exp -fa.EB/ ) + The self-consistency condition
implies then that ? m = )(g\ 1—-m~ ig insufficient and that P(m) has
also to grow like expia-m *} . VWith such a ?(m), however, Z(s)
would diverge even faster than indicated by Eg. (19‘); U'(E) would in
turn also grow faster than exp gaEB 4 } and consequently SJ (m) too.
All this originates in the strong exp(1 / 83) divergence of Zz(s) already
for the most modest ? (m), t will be shown that continuing as above we

never would satisfy the self-consistency condition (Appendix %),

*_
) As § (E) and ?(m) may contain CS\ functions, the integrals are

in fact of the Gtieltjes type.
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The situation is completely changed if we admit exponentially growing
G”(x) and g;(x) of the type v eXp(oOK) with SO :>:O. Then, all
integrals will converge for Re s > so where So is necessarily the same
in O and §> o« In that case the term corresponding to 1/s3 in Bq. {19)
can, for s -— s:, be replaced by 1/32 and the worst divergence dis-
appears, Now, only the divergence for s——)-s: of the mass integral in the
exponent of Hg., (12) is relevant and this divergence can be manipulated

(even removed) such that the self-consistency requirement is met with,

Again, the situation is completely changed if we admit §’(m) and
< (B) growing faster than exponentially: all integrals diverge for all
s £ ® and no thermodynamics is possible, Thus such functions are

inadmissible,

Since exponential solutions will be shown to be possible, since
furthermore solutions growing faster than exponentially are excluded, and
since finally for any assumed g’(m) growing less than exponentially the

resulting G (E) is always trapped between §>(m) and exponential growth:
) @k
?(x) = g(o‘(x)) = @(e ) for all a>0; (20)

since this is so we are forced into the exponential behaviour of g’(m) and
0’(E) as the only possible one. This implies the existence of some

so.> 0 or, in other words, of a highest temperature TO = 1/so. We

have made it sufficiently plausible that a non-exponential solution cannot

exist, The proof is found in Appendix 3.

In the following section we shall show that the self-consistency

condition can be fulfilled by functions of the exponential type.
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%)  The Solution of the Self-Consistency Condition

We try the following ansatz for ? and o (asymptotic form)

23 S o
, . (21)
TE) — pefe®t O (e4F)

(Where, if necessary, polynomials may replace the gingle powers).

We suppose that 8, £ S~ £ with £ » 0 so that we really have an
isolated singularity. In fact, this is more general than it seems, because
it includes also certain superpositions of such functions with various

s £ Sy namely functions of the type
5e
. ' XM
‘%(Wb) —_— g{?(fmjx)@ Adx

o

which can formally be integrated by changing variables

S(_;(YVI ’Y‘MSO ’ " o
e' 3 . v - t.l > Pn/l ) 7 ~
g(’%u) —_— TW.__ < {;(W\A,l %D—‘_%)e (;(‘j > 600 (WL) Cg
me M >0 "

Thus, we only have to require that f(m,so) has an asymptotic expansion
bounded by a power of m; in that case, we are back to the ansatz (21).

Of course, we limit by the ansatz (21) seriously the class of functions we
admit for trial, but presently we only want to show that there are solutions

of the type (21) without aiming to prove that there might not also be
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solutions of the exponential type where So is not an isolated singularity
of Z(s). (e suppose, of courss, that A ig the singularity with the
largest real part, so that %(s) is holomorphic in the half plane

Re<‘~>S.)

As So is a singularity of Z( s), the value of sO must be the
same in ? and in 7 . Our supposition (21) of the asymptotic form of §’
and §° makes it possible to use an "Abelian thcorem" Z_Soetsch Satz 1, II 4._@7

which we quote here in a form adapted to cur situstion:

If F(x) has for x - o the asymptotic form
BA 59X C) & X .
Fxy =ax’e™ + Ule ) (22a)

with arbitrary real a, ¥ s 5o & such that 5, < so-a;

€ > 0 then the Laplace transform f(f‘) of F(t) exists
(trivially) and i holomorphic in the half plane Re s > 8.7
but it can be analytically continued into the half plane _
Re s > S except for a singularity at Sy with the leading

part

Q.F(éﬁ-/{)
"“_:—5}@1 for Y ¥ —‘7}-2) | (22p)

(55

N
a (- “1) G- /&) _<,  0
E;:j—;ijl (5-5 ) q (5-%.) (22¢)

for X:“P"-“/’j”z,"‘
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It is, of course, clear what we shall do: for P we take such a power
that in the exponent of Eq. (12) we obtain nv log(1 / s-—so) according to
(22¢) - which is the only possibility to get after exponentiation something
which again is of the form (22b,c) and for & such a power that we obtain
~ 1/s-so. Then the two functions ? (x) and O (x) differ asymptotically
only by a power of x and thus fulfil our self-consistency requirement,

For details see Appendix 4.

Roughly, then it goes as follows: we first adopt the simpler

‘notation introduced in Appendix 3, (AB, 1-4) and write

Z(S) = exr) Sl _\_/__0‘«. vi of%z/z ?(”Vl’t) Q(S'M) d‘/%} - 1

(2ny32 o ) ‘
o0 £ ’ (23)
Z(s) = gcr(zz)e,"” de

o

We here only need the asymptotic behaviour of Q(sm) for fixed s > O

and m —>®
Q(S%) —_— 83/2 e st for Sm —> & (24)

This is sufficient, since for s 2 s: any other term of the sum occuring
in the exponent (compere Appendix 3, Egs. (43, 1 and 2) will bear a ‘factor
exp(nsm) with n 2 2 and thus not lead to 2 singularity at So but at
' so/n < Sy Furthermore, we have pro‘ve.d in Appendix 1 that the rest of

the sum converges. Thus every contribution other than that coming from (24)
will be holomorphic at So and need not be cronsidered here, as it can be

replaced by its value at s, when s -—> s:o
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Now, with (24) we write

oy Quem)du - [w%om) Qsm)du + s I ) (25)
0

O

where M has to be chosen sufficiently large. The first integral gives a

function holomorphic at s and the second one can be evaluated for

s —~> s: by the theorem (22&—0) provided m3/29 (m) is of the form (21).

As we show in Appendix 4, a term of the form

j s, M

qu‘g(fm) —3 % e | (26)

gives, indeed, the desired logarithmic behaviour. We may then evaluate
the integral (25) to obtain ‘

=)

5]
§Mmﬂ“]Q@m)m%= F@M)+aﬁ”f}%?ef@"%)m (o)
’ v

Here the first integral F(s,li) can be numerically calculated if the mass

spectrum up to the mass M is known experimentally, Of course, the mass M

is defined to be so large that for m > M the asymptotic forms (24) ana

(26) hold, In that case, the r.h.s. of (27) is in fact independent of M.
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11)

The second integral is the well-known exponential integral

00 -
A —($-So)m , p = (..)4? '-M(5“59)J (28)
— £ = - C 4 P -

é . * P Ae-s, % B K

C = Bulers constant = 0.5772.....

For s—» So we drop the sum. Inserting everything into (23) yields

- \/O F’-(So H) a 1
Z(8) =, exp %@BW[ s:? T g (&}Q M(S-S) C)H

s=»st

CoLak (29)
= 2 So 3’2 VLVQ ) ° )
) Bl (52 o)

Qrs) L as?

where in the second form the argument of exp is constant. O (E) must then

have the asymptotic form

| | o= SGE - |
@(E)—'—’-} & C e 5 « F 2,34, ... (30)

£~

which will give /see (22a-c)/

I se, - N |
SW(E)QQ dE gt (g—_%b) b () - (N
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As (29) and (31) should become asjmptotically équal, we require

(32)

§ M) = ek.“o{ a Vo

F(SO/M) - (- @93 M]}

(2rs,)"” [ 06,2

What is the situation now ? We have shown that a solution of the

Z a s
exponential type is possible and that then m//zg)(m)-> 3 o™ ig the
asynptotic behaviour of the mass spectrum. There are, however, several

parameters left open, namely

so'=’1/TO' the inverse of the "highest temperature";
a and b constants in the mass spectrum and CT(E);
X the exponent in I(B);

'Vo the VOlume;Qf our box.

There is finally M; but if our theory is correct and if M is chosen

sufficiently large, then nothing should depend on M Z;ée (2127.

We thus have five parametérs with two equafions (32) which leaves

us with three free parameters describing the asymptotic behaviour of the

mass spectrum and of high energy collisions, The function F(SO,M) being
an integral over the low lying mass values up to M has no direct relation
to the asymptotic behaviour and will thus be considered to be a given
information and not as a set of free parameters. It is clear that this
function which is equivalent to the mass spectrum for m & M cannot be
derived from the present theory. The actual value of F(so,M) is indeed
not relevant, as it obviously drops out when one calculates physical
quantities like E, ¥ (the mean particle number) etc., from the logarithmic

derivative of Z(s).

In Section IV we shall try to reduce the number of parameters

and obtain limitations on their possible values.,
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4) The Highest Temperature,mTo. The Model of Distinguishable Particles

]

wi—

Our result (29) is, if written with T

(o'

S . o 4

Z(T) ——  (oust .(T;> (33)
T-T, o

The expectation value of the energy becomes

RV4
1’8

s

| —>

E(T) = - dbgZ(s) L (34)
ds T,

o

It diverges (simple pole) for T —a»T; ¢ the relative fluctuations are

—— 2

2 — —
= =

E-FE __Ldf _ 2 (55)
E E-ds o<

(of order one as we shall see). That is, when T —> T; , the fluctuations
become as large as the energy itself, This behaviour implies that, as usual,
we cannot only calculate E as a function of T, but can also conversely say
that, if a system of energy E is given, a temperature T(E) belongs to it
which becomes better and better defined - and equal to T; - when E grows
larger and larger. This is easily understood by imagining the following
"Gedankenexperiment". Somebody keeps for us a system (fire—ball) in a tem=-

perature bath T until equilibrium is established. Then he takes it out and
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isolates it. We are allowed to measure its energy . Knowing E, but

not T, what can we say about what T might have been ?

We may invert Eq. (34) veplacing ii by the actuel value E which

we found and then say T(®) was most likely the tempcrature of the bath.

Using the fact that for B —> o ~the temperature T “€‘TO and the relativa
|
.

e a

3

fluctuations (25)—> he absolute fluctuations — #/T)/, we see that

our guess will become safer and safer the larger the actuzl E was. Indeed:
if E wag very large, then the tsupersture T cannot have becn much lower
than TO; because, if it would have had, the probability for having found
the actual large E would have been practically zern because the most
likely energy values lie roughly between 0O and 2M(T) according to (35).
Hence, to every giveu energy E oue caﬁ assign a temperature ™(E) -
the inverse function of E(T) - which with a certain “probability" is the
one which, in a hypothetical tenperature bath, it has had hefore., The
"probability" *) that the actual tempersture was indeed T feonds to oune
and the temperature T <tends <o T; when the'eﬁefgy goes to infinity.
We may then forget about the canonical ensemble and temperature bath and

simply state:

For the‘physical systems described by our present theory we mai
~assign o any given energy E a temperature T(®), which is

not "“sharp" but which becomes sharp and tends to T; when

E = . In this way we associate a well-defined temperature TO
to all strong interactions at sufficiently high energy and
momentum transfer - independent of the actuallnumber of particles
(for this latter number a probabi;ityrdistribution can be

**)
calculated) o

This is what one frequently calls an ‘inverse probability".

*%
) Preliminary calculations show that the number of particles is distributed

approximately according to a Poisson law with E proportional to log E.
"N is however not the number of final particles; it is the number of
"fire~-balls" leaving Vo and decaying later. E is the total ehergy
only in a central collision, otherwise E £ K o

C.M,
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It is remarkable that a very similar behaviour is found when one constructs
a model of distinguishable particles. The partition function has there a
gimple pole (no branch point) at the point To. Indeed, if 6‘1, ‘22, -

D eeay & PEEREE are the energy levels then, with occupation numbers

n1, n2, ceoy Doy eens there will be

N |

mlm ! m. |

A ‘R A e L8 *re

states of energy £ =Zmégé ; N"'Zh;
: (

In this case, if particles can be freely created

N . N! El > _ &N
Z=> 2 We T =2_ [ZQ ‘r] (36)

~
P

il

givesv

q 1 T, gt
Z= e/ 3 = 3 —3 J To= (37)

1->g 7-%T =T Vo

¢ T2

which for T — T; becomes
Con St

Z(T) Londt (38)

P

T -1
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We see that our theory would give the same behaviour if in (33)

T Bz - o
0o XVeTo™ 1 o o =.\fé§@
(Qn)3h o Vo

Taking the "natural interaction volume"

v, e M ()

o 3 \mg

3 3/2

we arrive at TO s 185 MeV- and a & 4.107 MeV

)

We shall see in the next section that, indced, a, o and To

will have valucs very near to these.

That our theory shows a behaviour so similar to that of a model

in which all particles are distinguishable (that they have zero mass is

irrelevant) is not surprising, because with the exponentially increasing

mass spectrum there are for E — w so many particle states available

that it almost never happens that two equal ones are present at the same

time, Thus, all those vhich are actually present can be distinguished from

each other,
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IV, PHYSICAL INTERPRETATION

1) The Highest Temperature To

Our self-consistency requirement has forced us rather unexpectedly
into an exponentially growing mass spectrum and a highest temperature TO.
The question is now: does nature indeed behave like this ? If so, can
we find reasonable values for the parameters which we could not yet
determine from conditions inside our theory ? It will be shown that both

are very likely to be true.

The first important result is the Lighest temperature. Are there
experimental indications of its existence ? Assume that there is indeed
such a temperature To' Then in all collisions of hadrons with sufficiently
large total energy and momentum transfer, the temperature To will be
reached but, for B = ®, mnever overpassed. Without going into any
details of a theory which still has to be developed, one would expect that
this temperature must govern the transverse momentum distribution of the
outgoing particles; that it must bé the transverse momentum distribution
is clear, because this distribution will not be affected by any kinematical
effect caused by fast, and from collision to collision enormously varying,
relative motions of different parts of the heated volume *): any Lorentz

transformation in the direction of the collision axis will leave P,

and its distribution invariant,

*)

As actually it will turn out that To a» mg is rather "low", TO
will rapidly be reached in collisions long before thermodynamical
equilibrium in the usual sense is reached. We thus may have an almost
constant temperature To all over the volume VO Withouﬁ necessarily
having a constant energy density and without having transformed all
kinetic energy in VO into heat motion. Remaining collective motions
of whole parts of Vo will then be strongly correlated to the former
motion of the incoming colliding particles. In the longitudinal
directions this collective motion will in general suppress the iso-

tropic but small heat motion (except in very central collisions).
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Because of this invariance we may calcuiatewfor T ne To the
transverse momentum distribution for the simple case of an ideal equi-
librium in a volume at rest (in that case the amount of energy transformed
into heat would be maximal, but the temperature would still be To and
that is all what counts for the momentum distribution) From the usual
formulae of statistical mechanics and with x = exp(- gxk/T) our

‘ oLk
partition function

— —  Vak
Z =2_, XQMQ [42 =

{(5:042,M¢w for bosons
(v) ok ¢

J for fermions

(here the ground state ‘voLk = (0 is not subtracted) leads to the average

occupation numbors

' 1

for bosons

J.V-Q 2
— - e-r Po{*an _ /{'
ch . om @X ﬁﬁ»% Z =

1
6TV& k-+1

for fermions

If we are interested in a definite (stable) mass, then by integrating over
the Cg function corresponding to this mass in the mass spectrum and multi-
plying by the density

dp, dp, dp

2
QKQ. PU

of states, we immediztely obtain the momentum distribution; this may then
be integrated over the P, component in order to obtain the transverse

momentum distribution
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4

P,

+

S

ol
Moo (Pu)dp, = toust-p dp, - J Tl 11
P Q.*r L ’ -

Fermi

2 A

/V« = Pj_+ M.

(40)

Now T = ‘I‘O. Let us anticipate icll_e__:esult (4)), na,mely that TO ;\u/mﬂ”,

in order to see that for /u, = \/b +m2 > n (a few times ma suffices)
the + 1 in the denominator of the integrand is irrelevant, This is certainly
true for nucleons and not bad for all other particles with m < M except
for pions; for pions it will be valid once P, is larger than about

2-3 pion masses. Let us assume this; then the integral becomes - for

bosons as well as fermions - for T —> To

DY av: e _..___, e
Wpe) = Const-p,- fdx e TOVX (= M%.PJ:\/P'%+MZ; Ku(—@%) (41)
. g

With the asymptotic formula for K,! ZEhe same as (1.4)], which may be used

on account of our previous assumptions, we obtain

——— £ \/phm P
Wip, )~z Coust pJ_\/T\/P!m e \/“‘% C(P,L 20 7::,

(42)

(the latter for P, > TO and > m), In words: except for pions,
where this holds only for P larger than a few times m, , the

transversal momentum distribution will be of the Boltzmann type (42).
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This formula must apply even to elastic scatteringi(except in the

diffraction region) for the following reasons:

- ¥ 4{reating elastic scattering by our formalism does not mean that we
apply statistical mechanics to a two~body system (whiéh would indeed
be nonsense); it means in fact the following: our thermodynamical
sysfem is able to choose nct only the momenta, but also the number and
kinds of particles according to its convenience, that is¢ according
to statistical distribution laws implied by the partition function.

One possible choice is: two final particles.

* W(p;')dpi as given by (42) is the probability that a pafticle chosen
at random will have a transversal momentum between pJ; and RL +dpl. -

no matter how many other particles there are and what they do.

¥ we have seen that for sufficiently large energy and momentum transfer
i'the temperature becomes sharp and tends to T; o Therefore, a,given
fixed temperature (implying a Boltzmann distribution of pJ~) and
rigorous energy-momentum conscervation (being most stringent in elastic

scattering) are compatible.

*  the differential elastic cross—section (as a function of P, ) will

then contain three types of factors:
i) w(pr) from (42);‘
ii) the probability that the number of particles is N = 2,
iii) kinomatical and geomctrical factors (algebraic in p‘L ’ E).

According to preliminary calculations N(E) obeys a Poisson distribution
- ) :

with N ~ log E, so that W = 2) ~v % (log E) is a factor which

varies extremely slowly as compared to the exponential in (42), where

~no B for elastic scattering. The same holds for the comparison

Py
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of the factors of type iii) to W(p¢_). The smell elastic cross-—sections
outside the diffraction region therefore do not come from a small
probability for two-body final states (the two final particles may be
anything between the initial particles and two heavy fire-balls) but
from the Boltzmann factor (42). All two-body final states would have
such small weights, but there are very many of them Z;;g,; PP — p+Dy

pi0*, W, 744, ete.; all these should follow the Boltzmann law/,

* the elastic scattering is therefore one particular process of the many
competing ones; its probability is calculated from ‘the partition function
and is mainly given by (42). For 90o scattering angle (42) becomes
equivalent to Eg. (1). Thus the large angle elastic cross-section, as
described by the usual statistical theory, is only one very pafticular

case of thé class of states described by our thermodynamicél thédry.

Qur conclusion is then that in all high energy events‘wiﬁhbgyfficient total

energy and momentum trensfer - these events ranging from elastic scattering

to Jjets with hundreds of secondaries - the transversal momentum distribution

should be of the Boltzmann type (42) with one and the same temperature TO

which is independent of the primary energy, of the colliding particles

(hadrons), and of the mglﬁgp;ggggz.liﬁ‘jets a slow apparent increase of

Té .ﬁith the primary energy could be tolerated: it would be the effect of
smearing out the spectrum by‘suééeSsive,decay“of the emitted fire-balls into
smaller and smaller ones vntil finally the observed pions remain, having a

transversal spectrum with an effective temperature Té > T,/
s

This conclusion seems to be in good agreement with the observed facts.

14)

The elastic scattering which shows no apparent broadening due to decay is

A review with further references was recently presented by Orear
best suited for determining T , There, Eq. (42) fits indeed very well the

. . A . . .
experiment over a region where w ) varies by nine orders of magnitude !
by ¥y

Lﬁﬁg..i7e The electromagnetic form factors of the proton seem to behave
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accordingly, this was pointed out by Wu and Yang 1 . All this,

and up to jets with 106 GeV primary energy, with TO values which vary only
little from experiment to experiment and always lie around 160 MeV. Also
our numerical phase space calculations yielded such a value, namely 150 MeV
Z;bmpare Eq. (117. We shall take)the most reliable experimental value

: 14

coming from elastic scattering

T = 158 +3 [ Mev] ()

On the basis of the experimental evidence presenfed bj Orear and Wu and Yang
we believe that the question: "is there a highest temperature To in nature ?"
can be answered by "yes" and that the value of TO is rather well fixed

by Eq. (43).

2) The Other Parameters., The lMags-Spectrum

Having fixed To, we remain with three other parameters of which b,
the constant factor in CV(E), is rather uninteresting., The important ones
are any two of a, Vo and X [Eélated by (3227. We can estimate a priori
the approximate values of X and of Vo' Let us start with VO. We have
determined 'To from processes in which actually the interacting system has
been enclosed in a volume of the order of a nucleon volume and this is,
indeed, the only volume which we ever could expect to be relevant in high-
energy collisions, since the interaction ceases to exist for larger

distances. Thus 3
- 4T/t
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where /M, should not be very different from M e As To itself is also
of the order of Mg s We Sce that we actually come very near to what

distinguishable particles of m = 0 would give: (37).

Next consider ¢ , The density of states is according to (30)

_0'("’ E/'To
o(E) — 4E (44)
whereas g’(m) is given by (26)
el 45)
f(/hi) m. 572 €
Hence, for E,m —
g
g(x) a -~ Y2
—_ — X .
T(X) 4 (46)

Recalling the discussion following the self-consistency condition (13)
we would expect that 1-<¥-5/2 A~ -2 or A a2 1/2; if somehow it would

turn out that of is between 1/4 and 1 we would still be satisfied.A

We shall now proceed as follows: we take the experimental mass
spectrum and see whether it can be fitted by §>(m)<—9 am_5/2 exp(m/To)
with To = 158 MeV; and if so, with which value of a. Having determined
this value, we see whether the relation (32)

e,
H

aT, M) g T o’ = 378w’ 7
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can be satlufled with values of 0( and V corresponding to whét we

found a pI‘lOI‘l reas >onable' c*’.. s 1/2 Moy B e

That our asymptotic S) (m) should, in fact, fit the nass spectrun
in the region "up to R 1200 MeV (Where it seems to be pretty well known
experlmentally) is not obvious and must be considered a lucky accident if

it happens., It is, on the other hand, not unreasonable to expect this,
| b‘e‘cause with ’.I.‘O being as it is (158 T-’IeV), the exponential factor
exp(m/To) should practically govern the mass spectrum once m is several
times larger than TO, i,e., already at RZ 1000 MeV (unless the complete

unknown factor f (m) in front of the exponential would be very queer).

We have taken the mass spectrum as published by the Berkeley
10)

group and smoothed it out, in order to obtain a‘function which can be

compared to our asymptotic f (m). Without smoothing

N :
SexPanm. = 2__ V. E(W—W‘L) A | - (48)

L=

would be the spectrum for stable particles and sharp resonances, The sum
goes over Bose and Fermi particles; as we have seen, only the sum of
g)B gF enters 1nto the pat'tl b.Lon functlon when T——9 T o’ hence our
?(m) in (45) lb, in fcmct g)B+§F Furthermore, our ?(m) is in

so far unconventlonal as 1t counts every state Lsee l‘)/ consequently,

each, mass. occurring in (48) has to be counted as often as it has states

0 if particle = antiparticle

- @+ 1)(2T+1)- 2™ e 2, = i 12 particle / ansiparticle

(49)
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Here J and I are spin and isospin, respectively, of the particle.

In order to obtain a smooth function, we have replaced in the above sum
N

(48) the ¢ <functions by normalized Gauss functions., In Fig. 2 we

plot for m = Q, 200, 400, ..., 2000 MeV the following function

o ! & - (%-414-)2‘ ,_ )
g;é::m) T Vimc? £ Vi bep L” at? ? ;0 T =200 MV (s
4 . A L‘"‘( .

where the sum goes from the pion mass to the highest known resonances.

Above 1200 MeV there is every reason to believe that our experimental.
knowledge ‘is still very incomplete - in partioulér regerding bosons.. Up

to 1200 MeV +the function seems %o increase exponentially - with fluctuations,
of course. The slope is well fitted by TO = 158 MeV, Also we have

drawn our asymptotic g (m) with the value (theoreticians' best fit):

_ _ 3 Y
= 64510 MeV e wie o (51)

In comparing our curve with the experimental values one should keep in mind
that our g’(m) is an asymptotic formula for m - @ which becomes wrong

=~
when the factor m 3/2

begins to govern the behaviour (dotted line). Thus,
a comparison is possible only in a narrow range around 1000 MeV - just
enough to guess the above value of a. As the figure shows, our §>(m)

seems to have a good chance to be the correct extrapolation to higher
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)
mass values ), If so, then one should expect a great number of new
resonances to be discovered above 1200 MeV, Somewhere, not far above

2000 MeV the resonances will probably become so dense that an experimental
resolution seems hopeless and a true continyum starts, Here we should
remark that there seems to be no obvious way to disentangle the number of
resonances between m, m+dm from the number of states counted by ouxr

g\nﬂ, namely, our theory docs not say how the density of resonances

and the multiplicity per resonance: - (2J+1)(?I+1) 2 /SCu (494/
separately increase with m (our g(m counts the »roduct of these two). It
may. be that on the first factor, (2J+1), the Regge poles, =nd on the second
(21+1), the higher symmetries will have to say something. In view of what

we called & fire-ball Zﬁﬁscussion below Eq. (13@i7vwe should, however,

expect that J < 10 (or even lower), whatever m 1is,

We now insert our values for a and TO into (47) and obtain

= 12.8 x 10° e, so that

aTB/

(e}

o(/u?’ _ 3.42 - 0" '[He\/‘ 3]

With o = 1/2 wec obtain Moo= 190 MeV = 1,37 mgp  and with X =
we find WL = 151 MeV = 1.1 ngy o As we have anticipated on page 24
all parameters To,c{ , VO have turned out to be very ncar those for

the modcl-case of massless distinguishable particles (accidentally).

*
) It would be easy to tind a g)(m) = f(m)-exp( ) which practicaliy

158
coincides with our asymptotic form above 1000 keV and follows the
cxperimental values very well down to m = O; such a g’(m) would

look very impressive in Fig. 2, but is physically not significant.
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In any case, the values are reasonable and a1l lie in the rather narrow
range which is given by the condition {(47) and the a priori argument that
/A,gg m. end ol ¢ 1/2, With this a priori limitation of two parameters
the value of a was almost fixed and we have, indeed, only TO at our
free disposal, With the one value TO = 158 MeV we could fit the trans-
versal momentum distribution and a rather convincing cxtrapolation of the

mess spectrum.
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V. CUNCLUSLIONSs OPEN QUESTIONS; SFECULATIONS

We have developed a thermolynamical theory of streng interactions

which is based on three postulates:

i) strong interactions arc so strong that they produce an infinity

- . oA . . e - \
of resorances (whlcn for m --» ¢ are called fire-balls);
ii) fire-balls can be described by statistical thermodynamics;

iii) fire-balls consist of fire-balls.

These three postulates fix completely the structure of the theory; some
numerical values of parameters remain, however, undetermined., Except for
one of them, the highest temperature TO, a piiori limitations have been
given which fix them almost completely. The simple model of a gas of
distinguishable particles, which shares many features with our present
theory (but should not be talken seriously), leads to a determination of

TO which agrees rather well with the experimental value. This seems to
indicate that by only slightly narrowing the above postulates one might

be able to calculate To also in the framework of the present theory,

It could be that this narrowing consists in adding to the above postulates

a fourth one, which may be formulatved (tentatively):

iv) strong interections are as strong as they possibly can be

without violating postulate ii),

Similar conjectures have been prcnounced already by several authors and in

0)

case the point is this:

. 2 . .
several versions without reference to thermodynemics, however, In oux

we have met here an example of extreme behaviour, namely: <the
mass spectrum grows exponentially, As we have seen this i3 the maximum
tolerated - otherwise postulate ii) would have been violated. This maximal

growth was enforced by postulate iii); but this postulate has been guessed
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from experience. There was no a priori reason to expect it to hold (and we
know other interactions where it does not). After our analysis it is clear
that this postulate - or the experimental behaviour on which it was based -
is equivalent to the extremal qualities of the mass spectrum. The rate of
increase of the mass spectrum has certainly to do with the strength of the
underlying interaction (and with its structure). It is conceivable that
with greater strength of the interaction the mass spectrum could have grown
faster than exponentially and thermodynamics would have broken down. This
alone is probably not a sufficient reason to convince nature that it should
renounce such a strong interaction. It is interesting, however, to

observe that thermodynamics, here on the borderline of its domain of
existonce, implies another extremal behaviours that of the clastic scat-
tering amplitude. As we have secn, the transversal momentum distribution
even in elastic scattering is asymptotically a Boltzmann distribution with
TO as temperature, Thus, we conclude for the elastic scattering amplitude

that in the physical region (s channel)

o | coust . Vs
s t=-q5) —> - o7
l&}g, %k ( ) ) P 51'7;

6)

reasonable analytical properties of A(syt)) ﬁnleSs the amplitude becomes

It has been shown ! that no faster decrease is permitted (supposing
identically zero. This behaviour also is the limiting one which just allows
to solve uniquely partial wave dispersion relations if the discontinuity
along the left-hand cut is given 17)¢

I cannot believe that &ll this is a purely accidental coincidence;
meeting with extremal properties in so many different directions seems to
indicate that strong interactions are indeed governed by some extremal

principle which is not yet understood, Accepting this point of view, it
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seems possible to guess also the numerical value of Td without recurrence
to the experiment. The argument would be: the exponential growth of the
mass spectrum is maximal, if several types of functions are considered,

Once the exponential type is chosen, nameiy
A — —
by g () m

we take the maximal inérease which we could obtain-by relating the free ;
parameter mo to any of the fundamental mass values occurring ih strong
interactions, With this argument we find m, =g = To. That the experi-
mental value is somewhat (by a factor 1.14) larger could be understood as
the influence of the less strong interactions related to strange‘particlesp
whose smallest mass is m s ' ) \

We do not pretend that the above remarks give an explanation to
any of the more fundamental cuestions about strong interactions; we believe,
however, that thermodyramics adds another indication and offers é new view,
On the other hand, one has to face the possibility that not much more than
thermodynamics can be done at high energies and that even the analytical

properties of scattering amplitudes are determined by thermodynamics,

unitarity and crossing relations.

If our present theory is correct, then it might be of not much use
to go in individual scattering experiments to much higher energies than a
few GeV, because above that only the number and longitudinal momentum of
the secondaries produced would increase, whereas the details of interaction
would be hidden under the Boltzmann distribution; even the mass distribution

of secondaries follows a probability distribution and would not reveal any
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of the secrets we are after - except for one possibility: the basic triplets
making up the nucleons. Their possible existence has presumably no implications
on the present theory, they would just add one line somewhere in our con-

tinuous mass spectrum.

Our belief that thermodynamics with a highest temperature TO "L Mg

indeed governs strong interactions at sufficiently high energy and momentum
. . 1

transfer is supported also by the observation of Wu and Yang 5)

that the electromagnetic form factors of the proton should and, in fact,

seem to depend on \/52? such that

s,

‘%ky F: ( i ) *E“f> _ f 2
% q. q<-¢oq

4T,

namely, as the 4th root of the elastic pp cross-section. Our present

thermodynamics would, indeed, provide:
Mthe mechanism independent of the method of excitation"

which Wu and Yang postulate in order to conclude the above behaviour of

the Torm factors as well as of various cross—sections.

It is likely that pure electromagnetic and weak interactions do not
show the thermodynemic behaviour deécribed in this paper - at least not
as long as no real hadrons are produced, It cannot, however, be excluded
that even below the threshold for hadron production some thermodynamical
features creep in via virtual hadrons. In that case TO would somehow
appear in electron-electron scattering (and other such interactions) at
sufficiently high energy and momentum transfer. Unfortunately, the centre-
of-mass energy of such a collision should be in the GeV region (which in

the next future seems out of question)s
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. Our theory might also have consequences in astrophysics, where
the model of the "neutron star" * could perhaps be improved by including
all possible hadrons - i.e,, by adoption of the present thermodynamics.

A first step in this direction has already been made by Ambasrtsumian

: 19)
and Ssakyan .

It remains to mention a few open problems inside our theory:

i) we have not explained why resonances and fire-balls take

“part in the "equilibrium" as if they were stable particles;

ii) we have only calculated the transvéfsal momentum distribution.
In doiﬁg s0 we assumed a rather peculiar thermodynamical
"equilibrium" where stili large collective relative motions
in the direction of the collision axis remained and where the
word equilibrium merely meant constant temperature zs'To
but not constant energy density. No attempt was made to

describe this state of affairs in detail;

iii) related to the foregoing point is the still lacking theory of
jets,s It will certainly not be a two-fire-ball theory. Some
kiﬁematical model will presumably be unavoidable; it may bé
that introducing the impact parameter will already suffice to
calculate multiplicities and longitudinal momentum distribution,
Such_a theory would also provide a better justification for the

application of thermodynamics to elastic scattering;

For a review and further references see e.g, Chiu 18),

*)

I am grateful to Professor G. Cocconi for having drawn my attention to this

possible application.
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iv) the relation between thermodynamics and enalytical properties
of the scattering amplitude is still obscure, The bridge
between these two is unitarity, where a sum over the mass

spectrum is implied.
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APPLENDIX 1

CONVERGENCE OF TEE SUM IN Ba. (12)

Congider the integral

[ea)

{ — .

| lmym) moK, (mem)dw = T (m)s) (41.1)

(o]

For all O £ x £ o we have 1)

X L ) o [/ _

00 = (& aokatat < (Mol gt = Ky ()

: -X : ‘
K.ué(x) = € (5% " (’“‘ '?z + }%‘2) - (A1.2)

U;sihg the fact that ?(m) =0 for m L m we find with

~ T .9
? (m3n) < gﬁ(m) and using (A1.2)

I(ms) TM\/?‘ M Am L 3 ) g
< )¢ 2h $M <+ms+,;,,—z§2> m <

Wm e (W e ) dm = F(s)
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Hence I(n,s) < F(s) where F(s) is independent.of n. Therefore,

in Eq. (12)

(41.3)

50 - o |
2 L) < Fl&)2-5n = F(S) G(2)

that ie, if the first integral (n=1) converges, then the sum

converges.

Assume now that the first integral (n=1) does not converge but
that the others (r > 2) do. Since the exponential factor in the
asymptotic form of K (x) does not depend on p and is always e—x», it
follows that as lQng as § (m) grows less than ,oxponentialiy all integrals
I(n,s) are finitg: for s > O and diverge for s -——>~O+° Hence at s =0
it is not possible to have the first integral = oo and the others finite.

. This is possible, however, at s = So > 0. In order to have a divergent

integral for s -—>s:, g‘(m) must grow exponentially

s, | 0
S(MQ = f('m) e 3 #(’W‘) = (5 (e%m) for every A>0 (A1.4)

In that case

524

e - v ‘ - . —W(MS;‘SG‘)f_-. .
I(ns) <« (5\/2‘)’:;%- {!(/m) (,m1+ %ﬂ+ (;I%gl)e Am (41.5)
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Now we can have at 8 = 5, @ divergent integral for n =1 but convergent
integrals for n » 2 (of course,. f(m) can be such that even for n =1

the integral converges at s = so>. Then for n » 2 and s » S

c:.‘)
2 Mms
Tene) < (V5T o e 20 € e = G5

Therefore in (12) for s > So

ﬁ%f‘I' s) < I(1,8)+ G(%)[qYQ)—T]

Now for s — SZ the first term I(1 ,s) may diverge, but not the

rest of the sum.
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APPENDIZX_ 2

NOTATIONS USED FOR COMPARING FUNCTIONS

1) If lf(x)l £ Kg(V) for x -—;~XO we write :E(X) =O(g(x))

for x - XO;

"f(x) is at most of the order of g(x)n.,

2) If f(x)/g(x)na-ﬁ fcr X—-;sxo we write f(x)—»Ag(x)

for x — XO;

nf(x) tends asymptotically to Ag(x)",

3) If f(x)/g(x) — 0 for x — Xo we writc f(x) = o(g(x))

for x -—'93{0;

nr(x) is of smaller order than g(x)",

4) In the particular casc that the function f(x) is compared to an

exponential function we say:

a) "f(x) grows faster than exponentially",

. -ax
if f(x)e —> @ for every a > O when X—> .

b) "f(x) grows exponentially",

if an ao > O exists such that

C
_g(x> e“'&}( /

\\ when X —> 00,
=0 for (< A,

for > Qg

Tt remains to bc stated, in individual cases, what happens for

8 =a .
o]
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c) "f(x) grows less than exponentially™,
. —-oX .
if f(x)e —> 0 for every a > 0 when x— 0,
5) If we wish to distinguish between =z approaching x  from below
and - from :above, Wwe write EACE

X = X if x approaches X from below

(@]

+ . N o '
X—> X if x approaches x from above,

o
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APPENDIX _3

NON-EXISTENCE. OF NON-EXPONENTIAL SOLULIONS

We show here that our Hgs. (12),

fo ¢

49.

(13) do not possess a solution

(X)‘} which grows less than exponentially for x -~ 0.

We first simplify the notation o little by writing for the

exponent in Eg, (12)

Z%z

oo

lus

[e]

Vo 4

(r 3 53

I

by which we

-7

Qeem) = \2 6" stV

9 (m) +§F”“

We shall need the

small arguments.,

From (14) we find

\z =%

G (sm)

65/166/5

S w" p(mym ) Ky (mem) dm

A§ (m) =

[ gum) & (sm) don

have introduced the function

ol
Zw‘: L) Ky (mms) tmm) = 1[44?

fg(m) fF"(%l)

asymptotic behdviour of Q(sm)

Je(mm)
m* for
for

(A3.1)
1 n odd
g’ n even
(43,2)

Z;ée,(6i7.

for large and

sm —> O

Em —> =0

(43.3)



With these notations Eq. (12) becomes

[24]
2(s) = ezp{(x’)m" Lo [ oun) Qeomydm | - 1
3 © (43.4)
Z(s) = So*(t»:—') e °F dE

o)

The self-consistency condition requires that we find a péir of positive
functions fulfilling (A3.4v) and having the property log O"(X) —>» log §3 (X)

‘for x~—> ®, This can also be written
g()(): o(x)- ﬁ(x) where &9‘3 ?(X) = &(&g CT(")) (43,5)

As we wish to prove that this is impossible unless " f and ¢~ grow

exponentially, we shall restrict ourselves to functions which grow less
than exponehtially and show that the assumption, that among them a pair
~obeying (43.4) and (43.5) could exist, will lead to a contradiction. We,

of course, exclude the trivial solution f = T = 0,

Let us start with a ?(m) which describes just the pions, i.c.,

?(m) = BJ(m-mw); We obtain from (A%.4)

Vo 3 3 |
2(s) = ep i ome Qsme) | -
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and with s -= 0 the asymptotic behaviour

)ﬂ 3\"/0215 “) 3 ‘
Z(S) — eX&o & “jl;é_‘-z P f (for pions only) (A3‘6)

>

. ,n) =1 for all n,

The result is the well~known partition function for a gas of mass -zero

where (AB.B) has been used together with r(m

bosons with 3 degrees of freedom. We invert this Z(s) and calculate the

corresponding O‘(E):

‘ X+1od
TR

T(E) =~ 7m ] Llx+iy)e

X—lot

()('H‘,Ls

e N

€
d(ly) 5 x>0 (43.7)

This integral is independent of x and indeed represents GH(E), since

we know that Z(s) can be written as a Laplace transform and the conditions
for the validity of (A3.7) are fulfilled /Doetsch, Satz 3, T4.4/. As the
integrand is holomorphic in the half-plane x > O and - with our present
Z(s) -~ has one single minimum on the real axis at somelpoint sd(E), we
may take the path of integration =-ico to +ico through this: so(E)

where it will have a maximum (saddle point method)., We shall write
p 4
Z(8) = exp 3{ 4{(5)} (43.8)

and obtain asymptotically for E —c Zgéplacing the integrand by a
suitable Gauss function - Doetsch II, 3.5/
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/

CESE) [
T(E) —= S(EV) € S g ——
( ) € +o0 Z<) Ve \/ QTL'J')\L“(SG)
| | (43.9)
S;D(E) given by «&/ (Sa) = - £
BEquation (A3.6) then gives
(3c)™ N7
o (&) —> \/é’n- S ekpgéf(zc) Y E /4}
g 43.10)
o - 3V, \Cf(lv‘) (
— -——..P—__—

As it should, the exponent equals the entropy for a massless Bose gas with

%3 degrees of freedom,

We now observe that T (E) Srowss almost exponentially, namely,

~o oxp EB/4

s - although we started from a ?(m) - which was just a Cy
function'. Clearly, any ?(m) which goes to a constant for m— 0

3 ~
and for which | §(m)dm exists, will lead to
o

>0

meslag(rm) Qsm)dm = £(5) — Gnit for >0 [see (43.3)/

%

and will give the same G (&) as above, except for anotuer value of c

in Eq,. (1&3.10). In other words: mno such SJ(X) can b_e a solution.
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Indeed, since gD (x) should be somewhere 74 O, it follows at once that
it must grow at least as exp(m3/4) in order to have a chance to be a
solution. We therefore restrict our further considerations to functions with

the asymptotic behaviour

. 4 p X o 0»
Q‘XFP(%L) = L»(?(_K]) = 9<€ K) for every “a=>0 (A3.11)

1/2 3/4

We have chosen x in the l.h.s. because X would have excluded,

-2 n3/4

€eey Wm © ‘

We must now evaluate the infegral in the exponent'“of (A3.4) foi'

such g (m)

ot

SE ’WLS fo. i){%l. ) Q( S ) dm = F($ )

o

So far, when ‘.j f(m)dm < w0, this F(s) — const for s — 0., Indeed,

F( s) A J S’(m)dm, ‘because in the integrand all contributions coming from
m> M (M some suitable constant) are negligible and therefore, when

s —> 0, the upper line of Eq. (AS‘,B) becomes valid for the whole integration.
Now, with functions of the type described by (AB.H), it is the lower line

of (ABQB) which will determine the behaviour of the integral,

We choose - for & fixed - a very large mass M and write

65/166/5



54+

H
o S 3. \
[ mZom) Qrsm)ydm = |wm pom) El(sm ) dm +
9} » o .
[o%%)
+ J"?)’lg/g o(m ] 9 ($m )Wﬂ +
" (A3.13)
[e%a)
3 —$™m
+ 5/2( m¥2 pim) e S dm
F:;
where
a(g(m) _ Q(sfm)- 83/2 6—$'m _ 0’(83/2efsm4)
' ' (A3.14)

_Z:i-n fact

Glsm) ~o e 7
q(sm) W j see (14)/

Now, the first integral, for s —-}O+, becomes a constanty the second

and third will diverge, but the second integral will have divergence of a lower

j (second) [J thlrd)—]

and will, together with the first one, be neglected:

order

-~
[S¥a}
] o
§w"’2f(”m)@(5’m ) dm P Jm pim) e dm (43.15)
5> o
0

= 5% Z (¢)
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where reintroducing the lower limit O has no effect on the asymptotic

behaviour. Equaticn (A’j. 1 5) defines the abbreviation Z( s) .

In this integral the integrand has a maximum at some place mo(s) ’
which moves to co when & -3 C'+, whereas the value and second derivative at
the maximum value both diverge for s-—> 0 (of course, if §>(m) is of the
type (4%3.11)). 1In that case a formula similar to (43.9) gives the asymptotic

behaviour of the integral; we write
3 (]
% e(rm) = exp { g(m) } (43.16)

and obtain /,replacmg the 1ntegrand by a suitable Gauss function -

Doetsch II, 3._/

Z(S) samt expd G(m,(53) = Smy(8) /‘2”
( ) -3 % } \( i} (7, ) <A3,9i)

M, ($) given by %{("’iwo) =

[ft is reassuring that for the type of functions f , O considered here,
a twofold application of formulae like (4%.9) and (A3.9') leads from
7z(s) over T (E) back to Z(s) in the asymptotic limit s-—> O_,7

Now comes the main conclusion, Suppose a solution of the type (A3.11)
exists, Then ?(x) = f(x)0(x) with log f(x) = o(10gT(x)). We have
defined (A3.16)

(A3.17)

65/166/5



56 [

For functions of the type (4%.11) we have

% o
= v (g)) = o(ax) s

so that log x 1is also to be neglected asymptotically. We have

by definition
0
: . =SX
Z(S)—.—.— JU‘(’C)@ Ax
o

With (A3.17) and the procedure corresponding to Eq. (A3.9') we obtain

Z(s ) . e {g(x (S)>-~éu&x “4’3 \@(K) sxo} 3”(&

to be neglected for s O
- (A3.18)

XO(S)_ is given by @‘('(X,) (3)) =8 for S—>07

Now, to calculate the mass in’tegral (A3.15) we use (A3,9') and find

26 = e favr- o |\ 75

(43.19)
xo(:s) as in (A3.18).

According to (A3.15), the mass integral equals 33/ 7Z(s). Inserting this

into Eq. (-;/4.3.4) (where the =1 can be neglected) we obtain

v —.
Z( ) S_‘OJ; X % . - 5" Z<5> + terms of smaller order}

(j2m )3/2 g3l2

(43.20)
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Taking twe times the logarithm of (AB.ZO) we find

/ . =, ‘ =, i = .
-&9% by Z(8) 32, lsg Z.(s) + 1r(£v32<5)) == g 2(9)
From Egs. (4%,18) and (43.19) we see that

lse Z(s) —> bsg Z(5)
g =t ¢

hence

[w% ﬁ«n% Z(s) — ﬁw@ Z(S) for &— OF (A3.21)

which is impossible. Thus no solution ? (X) = 6’(exp aX) can exist.
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APPENDIZ 4

EXISTENCE OF IXPONENTIAL SCLUTIONS

We start from Eq. (23)

=4

o {3y aw .
Z(f;) = exto %..vi. . i . E‘MM ?('I’:r’i} éa_ LS""&) dw } -1

(zx)¥2 93 - (a4,1)

i

2 -
Considering the asymptotic behaviour of Q(em) — 83/ “e™™  and that
of ?(m)m3/2~——> f(m)esom, we see that Z(s) will, for s-—so——b O+,
take the asymptotic form

(v \3/2 o
7 () —> D I ! , PP, _ (84.2)
( / 2 O-+ exp &(‘ZE&JZ( } “ (’42 O Bi f@§2>}‘ /.(

where 2z E s—so > 03 AZO{ or Bzt log z comes from the leading powers
of f(m) for m —>c . This is, what theorem (223—0) says, In fact,

p takes only the values 1, 2y 5y esesy whereas these are excluded for of
On the other hand, writing O (E) = g(E)eSOE we obtain by the same

theorem

(44.3)

o /ol ! o'y
Z(%) —>  (lopst - /‘AZ =+ R 2f @%%J

20" -
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Sl

We may of course have several terws of that sort in coth formulac, but

-+ PR o . .
for z -—=0 a definite one of them vill be the leading term. We can at

once discard the possibility that this is A4z with o« « 0, because
3 . /C ‘9 n 3 , .
then (44.2) would diverge as exp (=), 2 > 0, and therc is no such

=4

term in (A4.%). Thus certainly o > 0O but %1, 2y ese »

It is, of course, the term BzP log z which attracts our attention -

in particular when p = 0, since then (£4.2) gives

Loust

exp [CLWS‘{,' Log 4 ] = (12)

which has a counterpart in (A4.3). Ve shall exploit this possibility.soon.,
Le’c:us, however, consider presently the case where p > 1 or, where no

o .
such term is present at all, In that case 3z would be the leading

power (i.e., the less vanishing one)s

Z(z) —, exp { F(S.) - AR } ; WS 0 (44.4)

220

Clearly A > 0, becausc for z =0 we have F(SO) in the exponent and

when 2z grows, the exponent must decrease as it comes from an integral of
—zn . . : e . - .

the type j n(m)e™dm with h > 0, We obtain immediately a limitation

on K by calculating E  and the specific heat of our system by

E d o= |

E = - F (2 = ~ F

IE L |
=~ —— (proportional to spec. heat) = ‘”A-'X (9(~l) 2“ (A4.5)

dz
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Of course, we do not accept a negative specific heat, hence X <L 1 is

necessary
O( X Z /{ (if A.ZO( is the "leading" term). (A4,6)

In that case Z(z) dis finite for =z —- O+, but E(z) and the specific
heat diverge for gz — O+. In so far the behaviour is cuite similar to the
one with the logarithmic term present ’(w.‘aich' shall be discussed 1ater),

it is, on the other hand, not so convincingly simple, because

A | .
Z(Z) 34' Ceusts @ AZ = ‘(%L(E‘)gnieaféf (184.7)

would require a g(E) which is not a polynomiale. Of course, for z— O+

we may expand

_-fxd_lzw' |
Z(?—);:—; G st [l Az + £ A% ]

—-d—‘les(jE'

and with U(B)—> E we could produce the first and with similar

further powers the following terms in the square bracket. But as zbc

for 04 & £ 1 rises from O with infinite slope, the expansion in
powers of =z % ig not very good. This argument is not sufficient to reject
the possibility of a solution where Azoﬁ is the leading term in the
exponential; but the one which we shall discuss in the following is so

much more convincing that we presently discard Azo( as leading term,
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A We turn to the case that m S’(m) is such that in (A4.2) terms
B zp log z appear and that in particular B # 0. (In that case further
terms of the form Az , =X >0, are of course admitted but negligible
for z—=0 ,)

Going back to (A4.1) we see that what we obtain is not quite (A4.2)

but, more accurately,

udt

Z(Z) —_— exdo {(m\\g‘g. g‘%. A _i_} - (2) 2 .  (a8)

20t

since s = S, tZy this is not a pure power of z. In order to show that
we can remove this difficulty and obtain a "pure" power of 1 /z  (not
exactly, but with any desired precision) we must go back to the original

' form (12):

=
v .

260 op{ B Jemm oomy i} -

! 0

(44.9)

1)

For Kz(snm) we use an integral representation

whole snm plane cut from =-w to O.

-which( is valid in the

(¥4}
T —msm S‘ -t 0 N2
mswm ) = . x (44.10)
Kz( 'VV‘) I mem e e (f'f‘ ?_‘hS'M) F(Slz)
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With ?(m,n) = f(m,n)esﬁm oie has

b v -
‘ | 5. _, | ..
SM@?— \0_(’”‘; M ) e Ky (msm ) dm = S + g =
o P M
w0
- —(Mms-5,)m
" 0 / - 2 3
YIRS
M Q\/i%ﬁ%x - 2h5Mm

if f(m,n) is such that for s-— s-; the integral (n = 1) does not

converge (and this is supposed now) then also the other (n =2, 3, vee)
integrals have singularities, howeye‘r, at the points s, = (so/n) which
lie below So and cannot interest us; thus, Cb(nsli) and al;L othér
integrals (n > 2) are holomorphic at the singularity s = ‘so of the
n =1 integral. Therefcre, n > 1 will be disregarded from now on.

. . + . o '
The leading terms in the expenent for z—> 0 will then come

from the n = 1 integral, where - g)(fm‘/} ) = §/(%}
=0
Vo (.2 - )
2‘:\;{5 S’m ?M’M) KZ. (6’“«1) d’ﬂ/\
©
(a4.11)

. T =M .
K? (sm) = \/;—12% e . G(S'm)

where G(sm) is the integral over t in (A4.1Q) with n=1. It is
holomorphic in the sm plane .cut from -0 to O and has an asymptotic

. / .
GXpansion \ sem:n»-convergent)
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;” k(%0 k)
" ! i @
Glsm) — (2 S ) — "'-

™ s
Y + %\N(Sh/,(\‘
SM=>et ph_ o k1 (72~ %)

/ (44.12)

With (44.11) we find

0 =
| . v Yo [ ayy . =SM_
—= qu glu) Ky (Sm)dm = — (i) m2omle " Glsm)dm  (as.13)
o o
s
We again split the integral J‘ = _J-+ Ji1 and suppose M large enough
o 0

g0 that with

5o

m fim)e (44.14)

i

o(m)

the asymptotic form of f(m)

fim) — > ﬁ: (44.15)

M—3og h=i M

F

can be used in the second integral. The first integral Jﬂl contributes
4 0

a function which is holomorphic in the s planc cut from =-co to O

and which docs not interest us presently (it is essentially identical

with F(s,M), Eq. (27)).
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Denoting again s-so =z, wc obtain

. | Gsm) L(m) «i’m
z) —> &x F(z) + ¢ | @&
<) 2 >0t P ) J < 3z d”“} (44.16)
i1
In what follows we write
- / 92 ! - —~
B=0

(A4.,17)

fom) ~ S b2

A=

where U dnd the open upper 1limit of the sum indicate that these are

(or may be) semi-convergent series. We obtaln then

Gsm) {f(fm) f — = — 4 o )
e v =, 2“ (Z Gim fg:! a4 P s) L (44.18)

\DQ-w‘ mi T S fa OMQ

which defines the abbreviation i%f(s). This gives after integration

Z;heorcm (22a—q£7

4
.
i

W _.E!% N — on (=) 2 Qg
Q_(E—l) e[rm 16%! N ;%22“ ¢ (5)" (=) | &;fz
: -8 2 - r)/

5 . 4
(44.19)
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which defines the abbreviation h(z) = f...../. We wish to meke n(z)
constant in order to obtain a pure logarithm in the cxponent. New with

8 = z+so we have -

KT VA
i /?‘ o, Rt .4 7
W2 = (o) > F (aas) D50 (27
280/ TR (2-1)! ‘%o

Inserting <f; from (44.18) and cxpanding the powers of (1/z+so) yields

, h"! ~ ;- "2 r/z 1'\_3" ‘
..{Q@) =5 (2 0 s g C T = = Yy ] (14.20)
o &SD ; < K ogi-m “o ’ A= h J
HEARI ¢ T |

We have to make the squaere brackct cqual to a constant # 0O for k =1

and equal to 0 otherwise. As onc sees, our freedom to choose the
coefficients fn is sufficient to achieve our aim up to any finite k

(not up to k=, as the scrics (44.18) must not converge). Indeed,

in cach of the ensuing equations

Ko - 5o ‘ -
Z -.(T_—_f——. YZ‘ f Q iy S " /L I'"‘/'L-}‘/YI-B/(Z‘ S iA}’M\(;"“' /bz |
Q}.W~ﬁﬂ ii! m gn-m Yo ( ket z.z 5 ) (44.21)
2= 2,3,

the label n reaches the value k as its highest value. Thus fk occurs
. t . . . .

in the k b equation but not in any carlier one., This fk can be chosen
to fulfil the cquetion. Hence,
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j Gsm) fim) -2 (a4.22)

o dm = mit fmg-z'— + n(2) eﬁg%

where in h(z) we can, by a proper choice of the coefficients fn’ push
the exponent ko of its first non-vanishing power arbitrarily high up:
h(z) = az %.es.. . In other words, by a proper choice of the fn we

can achieve that

Z(z) —> exp { F(z) + touwdt - &6 3 } — E(z),(_zi)&w&f (44.23)

z—o7

is valid for z->(f- with any desired precision, although never exactly.
We cannot, for instance, by choosing const = integer, make the cut in
the 2z plane, which goes from z =0 to -w, disappear, we can,
however, make the discontinuity across this cut arbitrarily small in

the neighbourhood of z = 0. But tris is sufficient to guarantee that

— J A TRY =
Z(z)— Fo)-(2)"

z—>0%

can be written

Z() — [ g e de

where g(E) behaves as a power for E-—>00.
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o

What we have done in the main text qus. (26)—(32i7 is sinply this:

. ) s - N /
we have taken the Tirst tems of f(m) anl of G\sm)

fw) ;C;.l (¢ =a)

Q(@m) 'l*)%i

s/ ™~ (30

and neglected all the rest. Then a pure logarithm results. Our aim
in this appendix was to justify this by showing that the pure logarithm

can be approximated as well as we wish by adding suitable terms to f(m).
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ecative

More implicitly the "maximum strength" is contained in results by
M. Froissart, A, Martin, N.N. Meimann, which should be seen
together:

A, Martin (private communication) showed in a manner similar to
that used by N.N. Meimann (see below) that the sguared coupling
constant is smaller than some integral over forward elastic

TN cross-secctions; which is (almost) a statement about f,
being smaller than some integral over the total cross-sections:

. . 2 . . . .
increasing f  means increasing <5;O Now, M, Froissart and

later A. Martin (with weaker assumptiozs) proved
crtot(s - o) <« consgt. (1og sf% experimentally, it seems to
stay constant which is only little less than the maximum possible
increase. For details see:

A, Martin, "An absolute bound on the pion-pion scattering amplitude",
ITP-1%4 Stanford University, July 1964 (unpublished)e

M, Froissart, Phys. Rev, 123, 1053 (1961).

A, Martin, Phys, Rev. 129, 1432 (1963).

N.N, Meimann, Zh. Bsperim. i Teor. Fiz. 44, 1228 (1963),
(Transl. JETP 17, 830 (1963)).
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E? do/dw (GeV2 cm?/sr)
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FIG.1 [52 dO’eI/dw]pp as a function of the transverse

momentum [taken trom ref. 14)]



‘S(m) [MeV"] our asymptotic

mass spectrum
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FIG.2

The experimental mass spectrumlo) (smoothed)
compared to our asymptotic ?(m)., one-parameter
fit with a=6.5 x 103 [Mev3/2]



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

