
Distributed Measurement of Temperatures for the
HADES-MDC-Detector

Giacomo Ortona
Universitá di Torino, v. Pietro Giuria 1, 10125 Torino, Italy

ortona@studenti.ph.unito.it

Implementation of a new system for measure the temperature of the MDCs in the
HADES experiment: the system is based on the 1-Wire c© protocol provided by Dallas
Semiconductors.

1 Introduction

The HADES (High–
Acceptance–Di–Electron–
Spectrometer) experiment is
measuring electron-positron
pairs in order to investigate the
properties of hadronic matter at
high temperatures and densities.
To measure direction, position

and with the help of the HADES magnet, the
momentum of particles, 4 MDCs (Multiwire
Drift Chambers), are used. When a particle
passes through the gas of a MDC, it ionizes gas
particles which drift, due to an electric field,
to the wires passing through the chamber. In
every chamber there are 6 layers of sense wires.
From the fired wires it is possible to calculate
the crossing point of the particle, but to do
this very accurate it is needed to know the
temperature of the MDC, since the drift speed
of the ions is influenced by this parameter.

The core of the system to measure tempera-
tures is a new multipurpose board (fig.1) as de-
scribed in section ??. The goal is to have an easy
maintainable system, thus smart devices – Dal-
las DS1820 sensors (2.2) – are used to measure
the temperature. They can be placed in sev-
eral critical points, and provided a logical unit
that can perform analog to digital conversion.
Therefore only one bus for the data transmis-
sion is needed, and on that bus many sensors
can be connected using the 1-Wire c© protocol
(2.3), instead of using a couple of cables for each
sensors to read the analogical signal of the ther-
mocouple.

Fig. 1: HADSHOPOMO1 board. The big black
square in the center is the Linux processor, on the
wire 2 devices, on the board next to the wire connec-
tion the microcontroller.

2 Hardware

2.1 Board

The board built for the temperature control,
called HADSHOPOMO1, is a multipurpose
board, and so not all the features on it are used
for this project.
On the board are placed a microcontroller
(AT90CAN128), a Linux processor, an external
connector for 100 MBit Ethernet and a serial
port.
In the project is mainly used the 8–bits AVR mi-
crocontroller AT90CAN128, manufactured by
ATMEL c© , which has 128KB of programmable
Flash memory. This microcontroller can do sev-
eral actions, in the specific case is used to send
commands to the devices placed on the 1-Wire
bus(2.3) and to store the data received on the

1



2 3 Software

same bus. This data are then sent to the Linux
computer trough a special serial communication
chip called USART (Universal Synchronous and
Asynchronous serial Receiver and Transmitter)
which is highly flexible and can perform at the
same time the receiving and transmittance of
data.

From the computer on the board the data are
then forwarded to a server using a TCP proto-
col.

The board has to be supplied by an external
voltage of 6 – 9V but the internal voltage pro-
vided to the sensor is 3.3V.

2.2 Temperature Sensors

The temperature sensors used in the project are
DS1820 temperature sensors by Dallas. Each
one of them has a unique 64-bits identity code
which allows to address every single device. In
this way it is possible to have on a single bus
as many devices as the electronics can support.
The devices contain the logic needed to per-
form automatic conversion from analog to digi-
tal temperature data when a specific instruction
is received, and control the operations the de-
vices can perform. Every device has a 8–bytes
memory in which the values of the last temper-
ature conversion are stored; the configuration
register and the user defined limits of tempera-
ture, as one feature of the devices is the possibil-
ity to set one upper and one lower temperature
limit. Out of those limits a special bit (alarm
flag) is turned to 1.

The devices are working between –55◦C and
125◦C and have an accuracy of ±0.5◦C between
–10◦C and 85◦C. The resolution of the measure
can be set from a minimum of ±0.5◦C to a max-
imum of ±0.0625◦C. However, the time needed
to perform a conversion is strongly affected by
the resolution – a high resolution conversion can
last up to 750µs –.
The devices have 3 pins, one for the communi-
cation bus, one for the ground level and one for
the power supply.

2.3 1-Wire c© Protocol

The 1-Wire c© protocol allows to use a single
data line for all the communication between
a master (here: the AT90CAN128 microcon-
troller) and the slaves (the DS1820 devices).
In the idle state a resistor pulls up the line to

3.3V. The communication works on a very pre-
cise time–slots protocol; the master can issue
write slots for writing 0 (line down) and 1 (line
up), or reading slots. Any of this slots has to
last at least 60 µs.

The communication starts with a reset pulse
(line pulled down by the master for more than
480 µs) followed by a master command (e.g. to
identify the devices the master is referring to)
and they end with a command triggering a de-
vice operations, for example to start a conver-
sion or to send the data to the master. The set
of commands is defined by Dallas.

3 Software

3.1 Functionality

The software is divided in 3 different parts, each
one running on different machines. The main
part is running on the microcontroller and per-
forms the temperature reading, data conversion
into a string and transmission of these informa-
tions to the Linux processor on the board. On
this Linux processor is running the second part
of the code. It acts like a bridge, sending the
data received via serial transmission from the
microcontroller to the server via Ethernet and
vice versa. The third piece of software is run-
ning on the server and simply receives the data
sent by the Linux processor.

To make use of the functionality, the board
will be integrated into the HADES slow con-
trol system, built on basis of EPICS [11]
(Experimental Physics and Industrial Control
System). Through it is possible to control these
temperature sensors, for example turning them
on or off; setting parameters like thresholds and
adjusting sensibility.

The code written in C cannot be compiled
directly on the microcontroller, so a cross com-
piler is needed: this special compiler creates ex-
ecutable code for a platform which is not the
one on which the compiler runs. Once the code
is compiled the binary output of the compiler
can be transferred to the microcontroller’s flash
memory. Atmel c© provides a special device to
perform this operation.

The last step in the development process is
the debugging of the code. For this one uses
special functions which have to be implemented
in addition as well as external programs like a
software debugger.



3.2 Code 3

After the code is tested it is stored in a version
management system (e.g. CVS –Concurrent
Version System). So it is possible to trace the
code evolution while the project goes on.

3.2 Code

The code consists of 3 files:

Tempsens2.c implements the code running on
the microcontroller;

serialtrx.c is a program running on the Linux
processor;

sockettcp.c contains the functions executed on
the server server.

3.2.1 tempsens.c

The most important software part of the project
is the one running on the microcontroller.

First, this code initializes the 1–Wire c©

buses and the USART component (2.1) of the
AT90CAN128 to allow communication with the
embedded Linux PC on the board.

After a successful initialization, the MCU
(MicroController Unit) program waits for a
function call by the Linux processor – repre-
sented by a character. Such function can be:

• temperature detection;

• search for alarm conditions;

• setup of temperature limits;

To perform the temperature measurement,
first of all the master must identify every de-
vice on the bus by storing its ID number. This
is done by calling a special function, provided
by the manufacturer of the sensors. The func-
tion works asking all the devices to send their
ID number one bit a time. Every time it reads a
bit, the function will check if there are any errors
and if there is still more then one device active
on the bus. If not, the master will select all the
devices that putted the same bit, idle all the
other, and store the information that there are
still devices not recognized at this point. This
is done for each one of the 64 bits of the ID.
Since this function identifies just one device, it
is necessary to loop over the defined maximum
number of devices on the bus, giving as argu-
ment the bit position where there still was more
then one device active.

0 20000 40000 60000
pollings

-20

-10

0

10

20

30

40

C
el

si
us

 D
eg

re
es

artificial cooling

touched sensors

Fig. 2: 27 devices, running for 2 days data acquisi-
tion. At the beginning one of the sensors is cooled
down to about –20◦C. On x axis is shown the pro-
gressive number of polling.

After that, the master will trigger a simultane-
ous temperature conversion on all devices and
wait until they have finished. Then it will read
out the results of the conversion from each sen-
sor – one by one. This operation is done by
sending a special command followed by an ID
number of the devices being read out. As an
effect of this command, all devices which do not
match the ID will turn into an idle state until a
reset pulse is send via the bus.
Each time the temperature is read, the value
and the ID number of the respective sensor is
stored in a string, which is then send character
by character through the USART interface to
the Linux processor.
Looking up every time the device’s ID – instead
of reading it just once during initialization – al-
lows the program to react flexibly on changes in
the number of devices on the bus.

Until now the program has been tested with
37 devices, placed on two different buses. Figure
2 and 3 show temperature data collected over 2
days.

The search for an alarm condition works ex-
actly in the same way; the only difference is that
just the devices which measured during the last
conversion a temperature higher or lower than
the limits are read out. These devices have set
special bit turned to 1, which is used to set A
string will be sent with the IDs and tempera-
tures of the devices with alarm or with a mes-
sage if there no alarm flags on to the Linux pro-
cessor.

To change the temperature limits, the user
has to provide as hexadecimals numbers those
limits and the ID number of the device on which
these new limits have to be set. All this infor-



4 References

20000 40000 60000
Pollings

22

24

26

28

30

32

34

C
el

si
us

 D
eg

re
es

touched sensors

nights

Fig. 3: 27 devices 2 days running for 2 days data
acquisition, particular without the cooled sensor.
Touch–heated devices are clearly visible. On x axis
is shown the progressive number of polling.

mation are checked and if there are no problems,
the master will address the wanted device, idle
all the others, and send on the bus a command
that allows it to write 3 new bytes of the reg-
ister memory, the high temperature limit, the
low one and the register configuration, which is
overwritten every time with the default values.
A message with the result of the operation will
then be sent to the Linux processor.

3.2.2 serialtrx.c

Serialtrx.c is a program that run on the Linux
processor installed on the board.
As the program has to work with both, sockets
and serial transmissions, at the startup these
interfaces are initialized. Necessary parameters
like the number of the serial port and the IP
address of the server have to be provided on the
command line when launching the program.
Then a command selecting the operation which
will be performed by the devices (3.2.1) is re-
ceived and forwarded to the microcontroller. If
the command is the “set limit command” the
program will also forward the temperature lim-
its and the requested ID. At this point the pro-
gram will wait for 5 seconds for any data arriv-
ing through the serial port from the MCU; if no
data arrives a “no data” message is sent to the
server. All these steps are repeated in an endless
loop.

3.2.3 sockettcp.c

Sockettcp.c opens a socket on the server (the
TCP-IP port needed for the communication has
to be specified on the command line) and sends

operation command to the client – the Linux
processor on the board. If the command used
to set the temperature limits is send, then the
user is asked for the necessary values. In the
next step the program will print on the screen
a single string of data received from the client
and send again an operation command.
To terminate the program, the termination sig-
nal (CTRL–C) is captured and the socket con-
nection is closed before the execution of the pro-
gram is stopped.

Acknowledgments

I want to expecially thanks my tutor, Michael
Traxler for the constant help he gave to me and
for all the time he spent on my project.
I also want to thanks Simon Lang and Pe-
ter Zumbruch for the support, information and
teaching they gave to me.

References

[1] Dallas Semiconductor, DS1820 High-
Precision 1–Wire c© Digital Thermometer
Manual

[2] Dallas Semiconductor, Overview of 1–
Wire c© Technology and Its Use, 2002

[3] Atmel c© , AT90CAN128 DataSheet,
2005

[4] Atmel c© , 8–bit AVR c© Instruction set,
2002

[5] Rich Neswold, A GNU Development
Environment for the AVR Microcon-
troller, 2002

[6] avr-libc reference manual 1.4.4

[7] The Grace Team, Grace User’s Guide
(for Grace-5.1.20), 2006

[8] http://www.cplusplus.com/

[9] http://www.coding-
zone.co.uk/cpp/articles/
140101networkprogrammingj.shtml

[10] http://gnosis.cx/publish/programming/
sockets.html

[11] www.aps.anl.gov/epics/


