
Channel Archiver Manual

August 29, 2006,
for R3.14.4 and higher

Involvements

Bob Dalesio designed the original index file, data file layout, and implemented
the first prototype.
From then on, the following people have been involved at one time or another:

Thomas Birke,
Sergei Chevtsov,

Kay-Uwe Kasemir,
Chris Larrieu,
Greg Lawson,

Craig McChesney,
Peregrine McGehee,

Nick Pattengale,
Ernest Williams,

Noboru Yamamoto.

No Warranty

Although the programs and procedures described in this manual are meant to
be helpful instruments for archiving, maintaining and retrieving control system
data, there is no warranty, either expressed or implied, including, but not limited
to, fitness for a particular purpose. The entire risk as to the quality and perfor-
mance of the programs and procedures is with you. Should the programs or
procedures prove defective, you assume the cost of all necessary servicing,
repair or correction.

In no event will anybody, including the persons listed above, be liable to
you for damages, including any general, special, incidental or consequential
damages arising out of the use or inability to use the programs (including but
not limited to loss of data or data being rendered inaccurate or losses sustained
by you or third parties or a failure of the programs to operate with any other
programs).

Contents

1 Overview 1
1.1 Audience . 1
1.2 Channel Archiver Toolset . 1

2 Background 3
2.1 What is a Channel? . 3
2.2 Data Sources . 4
2.3 Sampling Options . 5
2.4 Time Stamps . 6
2.5 Sensible Sampling . 6
2.6 Times: EPICS, Local, Greenwich, Daylight Saving 8
2.7 Time Stamp Correlation . 10

2.7.1 “Raw” Data . 10
2.7.2 “Before or at” Interpretation of Start Times 10
2.7.3 Spreadsheet Generation 11
2.7.4 Averaging, Linear Interpolation 12
2.7.5 Plot-Binning . 14

3 ArchiveEngine 16
3.1 Configuration . 17

3.1.1 write period tag . 19
3.1.2 get threshold tag . 19
3.1.3 file size tag . 19
3.1.4 ignored future tag . 19
3.1.5 buffer reserve tag . 19
3.1.6 max repeat count tag . 20
3.1.7 disconnect tag . 20
3.1.8 group tag . 20
3.1.9 channel tag . 21

3.2 Example for Sampling a Channel 22
3.3 Starting and Stopping . 24

3.3.1 Starting . 24
3.3.2 “-log” Option . 24
3.3.3 “-description” Option . 24

i

3.3.4 “-port” Option . 24
3.3.5 “-nocfg” Option . 25
3.3.6 The “archive active.lck” File 25
3.3.7 More than one ArchiveEngine 25
3.3.8 Stopping . 25

3.4 Engine Web Server . 26
3.5 Threads . 27

4 Data Retrieval 29
4.1 Java Archive Client . 30
4.2 ArchiveExport . 30
4.3 Data Server . 32

4.3.1 Installation . 33
4.3.2 Configuration . 35
4.3.3 Testing, Debugging . 35
4.3.4 Standalone Data Server 37
4.3.5 Running ArchiveDataServerStandalone 37

4.4 XML-RPC Protocol . 38
4.4.1 archiver.info . 38
4.4.2 archiver.archives . 40
4.4.3 archiver.names . 41
4.4.4 archiver.values . 41
4.4.5 Note about Tiny Numbers and Precision 43

4.5 Perl Client . 43
4.6 “Storage” Library . 45
4.7 StripTool . 45
4.8 Matlab . 45

5 Indices 52
5.1 Index Tool . 53

5.1.1 make indexconfig.pl . 54
5.1.2 Internals . 54

6 Example Setup 56
6.1 Setup, archiveconfig.xml . 57
6.2 Sampling Computer . 58

6.2.1 Configuration . 59
6.2.2 update archive tree.pl . 59
6.2.3 ArchiveDaemon . 60
6.2.4 Status Information . 68

6.3 Sub-Archives . 68
6.4 Serving Computer . 70

6.4.1 Configuration . 71
6.4.2 send mailbox.pl . 72
6.4.3 update server.pl . 72
6.4.4 update indices.pl . 72

6.5 Common Tasks . 73
6.5.1 Modify Engine’s Request Files 73
6.5.2 Add Engine or Daemon 73
6.5.3 I want to stop a Daemon 73
6.5.4 A Daemon isn’t running 73
6.5.5 An Engine isn’t running 73
6.5.6 Re-build Indices . 74
6.5.7 Remove Channels, Data 74
6.5.8 More Data Management 74

7 Setup, Installation 75
7.1 Compilation . 75

7.1.1 XML-RPC . 76
7.1.2 Xerces XML Library . 78
7.1.3 Expat . 79
7.1.4 XML-Simple . 79
7.1.5 Frontier . 79

7.2 Installation . 80
7.2.1 DTD Files . 80

8 Data Format Details 82
8.1 Binary Index Files, RTree . 82

8.1.1 Implementation Details 84
8.2 Data Files . 85

8.2.1 Implementation Details 86
8.3 Index and Data File Repair . 87
8.4 Data Tool . 87

8.4.1 Delete Channels, Data . 88
8.4.2 Combine Sub-Archives 89
8.4.3 Reduce the Data Size, Data File Repair 89

8.5 Statistics . 90
8.5.1 Write Performance . 91
8.5.2 Index Performance . 91
8.5.3 Impact of Data Management on Performance 93
8.5.4 Binary Index compared to list index 94
8.5.5 Retrieval Performance . 94

9 Common Errors and Questions 96
9.1 Why is there no data in my archive? 96
9.2 Why do I get #N/A, why are there missing values in my spread-

sheet? . 96
9.3 Why do I not get what I think I should get from the network data

server? . 97
9.4 Back in time? . 97
9.5 Found an existing lock file ’archive active.lck’ 99
9.6 Crashes of the ArchiveEngine, 99

9.7 Cannot create a new data file within file size limit 100
9.8 Found an existing ’indextool active.lck’ lock file 100
9.9 What is a “regular expression”? 100
9.10 What about using NFS? . 101

10 Legacy 102
10.1 Directory Files . 102
10.2 ArchiveManager . 102
10.3 CAManager, CAbgManager . 103
10.4 Archive Engine ASCII Configurations 103

11 Changes 105

12 Index, Bibliography 112

Chapter 1

Overview

The Channel Archiver is an archiving toolset for the Experimental Physics and
Industrial Control System, EPICS [1]. It can archive any value that is available
via ChannelAccess (CA), the EPICS network protocol [2]. We use the term
“archiver” whenever we refer to the collection of programs which allow us to
take samples, place them into some storage and retrieve them again.

1.1 Audience

Casual users will probably only need to know how to run the “Java Archive
Viewer” program and read its online help — none of which is part of this man-
ual, except for a brief glimpse in section 4.6. They may refer to the background
information in chapter 2 for a general understanding of the archiver.

Engineers who configure archive engines will need to be familiar with the
fundamentals up to and including the ArchiveEngine description in chapter 3.
They also need to understand the Example Setup, chapter 6, unless their site
uses a different setup which is then described in site-specific documentation.

If you are stuck with installing and maintaining the archiver at your site, you
have to read and memorize this full document. Sorry. The table of contents
and index are meant to help, but you probably have to read it once cover to
cover.

1.2 Channel Archiver Toolset

The archiver toolset roughly splits into the following pieces:

Sampling: The ArchiveEngine collects data from a given list of ChannelAc-
cess Channels. The details of when a sample is taken etc. can be con-
figured: One may store every change, store changes that exceed a dead
band (that is configured on the CA server) or use periodic scanning. The

1

CHAPTER 1. OVERVIEW 2

configuration and operation of the ArchiveEngines will obviously require
some planning, as only data that was sampled and stored will be available
for future retrieval and analysis. Some sensible compromise will have to
be made between the urge to store all miniscule changes of all the avail-
able channels at a site on one hand, and data storage constraints on the
other.

Storage: The data is stored in binary index and data files. Most end users
need not be concerned about the internals of those files, not even where
they are located, because additional indices allow several sub-archives
to appear like one, bigger, combined archive. Somebody at each site,
though, will need to perform maintenance tasks: Decide where the data
sets are located, how they are backed up and how users can access
them.

Retrieval: The archiver toolset provides generic retrieval tools for browsing
the available channels and values, including simple multi-channel com-
parisons. An API allows users to write more sophisticated data analysis
tools, including an XML-RPC based network protocol for remote clients.

Chapter 2

Background

2.1 What is a Channel?

The Channel Archiver deals with Channels that are served by EPICS Chan-
nelAccess. It stores all the information available via ChannelAccess:

• Time Stamp

• Status/Severity

• Value

• Meta information:
Units, Limits, ... for numeric channels, enumeration strings for enumer-
ated channels.

The archiver stores the original time stamps as it receives them from Chan-
nelAccess. It cannot check if these time stamps are valid, except that it refuses
to go “back in time” because it can only append new values to the end of the
data storage. It is therefore imperative to properly configure the data sources,
that is: the clocks on the CA servers. For more details on the EPICS time
stamps refer to section 2.6.
NOTE: If the CA server provides bad time stamps, for example stamps that are
older than values which are already in the archive, or stamps that are unbe-
lievably far ahead in the future, the ArchiveEngine will log a warning message
and refuse to store the affected samples. This is a common reason for “Why is
there no data in my archive?”. (There is one more, hard to resolve reason for
back-in-time warnings, see page 97).

As for the values themselves, the native data type of the channel as re-
ported by ChannelAccess is stored. For those familiar with the ChannelAc-
cess API, this means: Channels that report a native data type of DBR xxx are
stored as DBR TIME xxx after once requesting the full DBR CTRL xxx infor-
mation. The Archiver can therefore handle scalar and array numerics (double,
int, ...), strings and enumerated types.

3

CHAPTER 2. BACKGROUND 4

2.2 Data Sources

Before even considering the available sampling options, it is important to un-
derstand the data sources, the ChannelAccess servers whose channels we
intend to archive. In most cases we will archive channels served by an EPICS
Input/Output Controller (IOC) which is configured via a collection of EPICS re-
cords. Alternatively, we can archive channels served by a custom-designed
CA server that utilizes the portable CA library PCAS. In those cases, one will
have to contact the implementor of the custom CA server for details. In the
following, we concentrate on the IOC scenario and use the analog input record
from listing 2.1 as an example.

record (a i , ” aiExample ”)
{

f i e l d (SCAN, ” .1 second ”)
f i e l d (ADEL , ” 0.1 ”)
f i e l d (EGU, ” Vo l t s ”)
f i e l d (PREC, ” 2 ”)
f i e l d (HOPR, ” 4095 ”)
f i e l d (LOPR, ” 0 ”)
f i e l d (HIHI , ” 10 ”)
f i e l d (HIGH , ” 9 ”)
f i e l d (LOW, ” 1 ”)
f i e l d (LOLO, ” 0 ”)
f i e l d (HHSV, ”MAJOR”)
f i e l d (HSV, ”MINOR”)

}

Listing 2.1: “aiExample” record

What happens when we try to archive the channel “aiExample”? We will re-
ceive updates for the record’s value field (VAL). In fact we might as well have
configured the archiver to use “aiExample.VAL” with exactly the same result.
The record is scanned at 10 Hz, so we can expect 10 values per second. Al-
most: The archive dead band (ADEL) limits the values that we receive via CA
to changes beyond 0.1. When archiving this channel, we could store at most
10 values per second or try to capture every change, utilizing the ADEL config-
uration to limit the network traffic.
NOTE: The archiver has no knowledge of the scan rate nor the dead band
configuration of your data source! You have to consult the IOC database or
PCAS-based code to obtain these.

With each value, the archiver stores the time stamp as well as the status and
severity. For aiExample, we configured a high limit of 10 with a MAJOR severity.
Consequently we will see a status/severity of HIHI/MAJOR whenever the VAL
field reaches the HIHI limit. In addition to the value (VAL field), the archiver

CHAPTER 2. BACKGROUND 5

also stores certain pieces of meta information. For numeric channels, it will
store the engineering units, suggested display precision, as well as limits for
display, control, warnings, and alarms. For enumerated channels, it stores the
enumeration strings. Applied to the aiExample record, the suggested display
precision is read from the PREC field, the limits are derived from HOPR, LOPR,
HIHI, ..., LOLO.
NOTE: You will have to consult the record reference manual or even record
source code to obtain the relations between record fields and channel proper-
ties. The analog input record’s EGU field for example provides the engineering
units for the VAL field. We could, however, also try to archive aiExample.SCAN,
that is the SCAN field of the same record. That channel aiExample.SCAN will
be an enumerated type with possible values “Passive”, “.1 second” and so on.
The EGU field of the record no longer applies! Another example worth consid-
ering: While HOPR defines the upper control limit for the VAL field, what is the
upper control limit if we archive the HOPR field itself?

It is also important to remember that the archiver — just like any other Chan-
nelAccess client — does not know anything about the underlying EPICS record
type of a channel. In fact the channel might not be based on any record at all if
we use a PCAS-based server. Given the name of an analog input record, it will
store the record’s value, units and limits, that is: most of the essential record
information. Given the name of a stepper motor record, the archiver will also
store the record’s value (motor position) with the units and limits of the motor
position. It will not store the acceleration, maximum speed or other details that
you might consider essential parts of the record. To archive those, one would
have to archive them as individual channels.

2.3 Sampling Options

The ArchiveEngine supports these sampling mechanisms:

Monitor: In this mode, the ArchiveEngine requests a CA monitor, i.e. it sub-
scribes to changes and we store all the values that the server sends out.
The CA server configuration determines when values are sent.

Sampled: In this mode, the ArchiveEngine periodically requests a value from
the CA server, e.g. every 30 seconds.

Sampled using monitors: This mode is very similar to the previous one: The
ArchiveEngine is again configured to store periodic samples, e.g. one
sample every 5 seconds. But instead of actively requesting a value from
the CA server at this rate, it establishes a monitor and only saves a value
every 5 seconds.

The configuration of the engine in section 3.1 describes how one selects the
sampling mechanism for each channel. When selecting monitored operation,
you will need to provide an estimate of how many monitors the channel emits,

CHAPTER 2. BACKGROUND 6

so that the engine can allocate appropriate buffer space (more on this in sec-
tions 3.1.5 and 3.1.9).

The difference between the two sampled modes is subtle but important for
performance reasons. Assume our data source changes at 1 Hz. If we want
to store a value every 30 seconds, it is most efficient to send a ’read’-request
every 30 seconds. If, on the other hand, we want to store a value every 5
seconds, it is usually more effective to establish a monitor, so we automatically
receive updates about every second, and simply ignore 4 of the 5 values.

When configuring a channel, the user only selects either “Monitor” or “Scan”
with a sampling rate. The ArchiveEngine will automatically determine which
mechanism to use for sampled operation, periodic reads or monitors (see the
get threshold configuration parameter, section 3.1.2, for details).
NOTE: The values dumped into the data storage will not offer much indication
of the sampling method. In the end, we only see values with time stamps. If for
example the time stamps of the stored values change every 20 seconds, this
could be the result of a monitored channel that happened to change every 20
seconds. We could also face a channel that changed at 10 Hz but was only
sampled every 20 seconds.

2.4 Time Stamps

Each ChannelAccess Server provides time-stamped data. An IOC for example
stamps each value when the corresponding record is processed. These time-
stamps offer nano-second granularity. Most applications will not require the full
accuracy, but some hardware-triggered acquisition, utilizing interrupts on a fast
CPU, might in fact put the full time stamp resolution to good use.

The ChannelArchiver as a generic tool does not know about the origin of
the time stamps, but it tries to conserve them. Fig. 2.1 shows the same chan-
nel, archived with different methods. When using the “Monitor” method for
archiving, we capture all the changes of the channel, resulting in the data
points marked by black diamonds. When we use scanned operation, e.g. every
30 seconds, the following happens: About every 30 seconds, the ArchiveEn-
gine stores the current value of the channel with its original time stamp!. So
while the ArchiveEngine might take a sample at

14:53:30, 14:54:00, 14:54:30, 14:55:00, ...,

it stores the time stamps that come with the values, and in the example from
Fig. 2.1 those happened to be

14:53:29.091, 14:53:59.092, 14:54:29.094, 14:54:59.095, ...

2.5 Sensible Sampling

The data source configuration and sampling need to be coordinated. In fact the
whole system needs to be understood. When we deal with water tank temper-

CHAPTER 2. BACKGROUND 7

Figure 2.1: Time Stamps and Sampling

atures as one example, we have to understand that the temperature is unlikely
to change rapidly. Let us assume that it only varies within 30...60 seconds. The
analog input record that reads the temperature could be configured to scan ev-
ery 2 seconds. Not because we expect the temperature to change that quickly
but mostly to provide the operator with a warm and fuzzy feeling that we are still
reading the temperature: The operator display will show minuscule variations
in temperature every 2 seconds. An ArchiveEngine that is meant to capture the
long-term trend of the tank temperature could then sample the value every 60
seconds.

On the other extreme could be channels for vacuum readings along linac
cavities. The records that read them might be configured to scan as fast as the
sensing devices permit, maybe beyond 10 Hz, so that interlocks on the IOC run
as fast as possible. Their dead bands (ADEL and MDEL) on the other hand
are configured to limit the data rate that is sent to monitoring CA clients: Only
meaningful vacuum changes are sent out, significantly reducing the amount
of data sent onto the network. The ArchiveEngine can then be configured to
monitor the channel: During normal operation, when the vacuum is fairly stable,
it will only receive a few values, but whenever the vacuum changes because of
a leak, it will receive a detailed picture of the event.

Another example is a short-term archive that is meant to store beam po-

CHAPTER 2. BACKGROUND 8

sition monitor (BPM) readings for every beam pulse. The records on the IOC
can then be configured with ADEL=-1 and the ArchiveEngine to use monitors,
resulting in a value being sent onto the network and stored in the archive even
if the values did not change. The point here is to store the time stamps and
beam positions for each beam pulse for later correlation. Needless to say that
this can result in a lot of data if the engine is kept running unattended. The
preferred mode of operation would be to run the engine only for the duration of
a short experiment.
NOTE: The scanning of the data source and the ArchiveEngine run in paral-
lel, they are not synchronized. Example: If you have a record scanned every
second and want to capture every change in value, configuring the ArchiveEn-
gine to scan every second is not advisable: Though both the record and the
ArchiveEngine would scan every second, the two scans are not synchronized
and rather unpredictable things can happen. Instead, the ”Monitor” option for
the ArchiveEngine should be used for this case.

2.6 Times: EPICS, Local, Greenwich, Daylight Sav-
ing

The EPICS base software that is used by the IOCs and also the archiver
deals with time as seconds and nanoseconds since January 1, 1990. This
“EPICS Time” is using Greenwich Mean Time (GMT), also known as Universal
Time Coordinates (UTC). So the EPICS Time stamp 0 stands for 01/01/1990,
00:00:00 UTC.

People living in Germany are typically in a time zone one hour east of UTC.
For them, the EPICS Time stamp 0 translates into January 1, 1990, at 01:00:00
in the morning. This is one example of “Local Time”. Anybody living in the
United States is of course familiar with time zone conversions ever since you
tried to match what’s in the TV Guide with what’s actually on TV.

The EPICS base software includes routines for converting EPICS Time into
Local Time and vice versa. Before EPICS R3.14, these routines used an envi-
ronment variable EPICS TS MIN WEST which needed to be set to the minutes
west of UTC. “-60” for Germany in the above example. Since R3.14, this envi-
ronment variable is no longer used. The time stamp conversion code in EPICS
base now relies on the operating system and the C/C++ runtime library to han-
dle any time zone issues.

It is important to remember that the data served by CA Servers is in EPICS
time, that is based on UTC and not your local time. The ArchiveEngine stores
that data as received, which is again in EPICS time based on UTC. When the
network data server is asked for samples, those are also based UTC, albeit
with a slight shift from a 1990 epoch to 1970, simply because this is more
convenient to use in most programming languages. C, C++, Java and perl all
include routines for converting 1970-epoch seconds to local time and back.

Time stamps are only converted to local time when they are displayed or

CHAPTER 2. BACKGROUND 9

entered. The ArchiveExport program will provide you with e.g. a spreadsheet
that has a “Time” column in local time. The Java Archive Client will plot the
data with a time axis in local time. Whenever you specify start and end times
for a data request, this is done in local time.

An example of possible consequences: Assume you live in San Francisco,
California (UTC-8), and you receive a CD-ROM with archived data from the
SNS in Oak Ridge, Tennessee (UTC-5). If you want to investigate what hap-
pened at noon, 12:00:00, on 01/01/2004 at the SNS, you will have to query for
09:00:00 to adjust for the different time zones.

The EPICS base code also relies on the operating system services for day-
light saving time (DST). At least under RedHat Linux 9 this seems to work
fine when you are inside the United States. Example: In the US, daylight sav-
ing time went into effect on 04/04/2004, 02:00:00, and I archived a ”stringin”
record which had device support that converted the time stamp of the record
into a string, including daylight savings information. The result looks like this
when the data is exported again on the next day, that is at a time where DST is
in effect:

EPICS Seconds Time Value
449917196 01:59:56 04/04/2004 01:59:56.805984000
449917197 01:59:57 04/04/2004 01:59:57.816036000
449917198 01:59:58 04/04/2004 01:59:58.826102000
449917199 01:59:59 04/04/2004 01:59:59.836110000
449917200 03:00:00 04/04/2004 03:00:00.846121000 (DST)
449917201 03:00:01 04/04/2004 03:00:01.856196000 (DST)
449917202 03:00:02 04/04/2004 03:00:02.867379000 (DST)
449917203 03:00:03 04/04/2004 03:00:03.876315000 (DST)
449917204 03:00:04 04/04/2004 03:00:04.886356000 (DST)

The seconds of the raw EPICS time stamp simply continue to count up through
the transition because UTC is not affected by DST. (This test was run in the US
Mountain time zone, UTC-7, and the nanoseconds of the EPICS time stamp
are omitted.) The Value of the string record, which contains the local time as
the IOC saw it, jumps from what would have been 02:00:00 to 03:00:00 DST.
When the time stamp is printed (at a later time when DST applies), the “Time”
column matches the times in the value string.

After changing the computer’s clock to times in January 2004 and 2005, that
is to times outside of DST before and after the data in the archive, the result
is the exact same: The EPICS time stamp routines use the DST settings that
apply for a given time stamp, not for the current time.

Countries differ in their algorithms for switching to DST, and if your operating
system does not follow the rules in your location, you might see sudden offsets
in time between the wall clock and the archived data.

CHAPTER 2. BACKGROUND 10

2.7 Time Stamp Correlation

We have stressed more than once that the Channel Archiver preserves the
original time stamps as sent by the CA servers. This commonly leads to difficul-
ties when comparing values from different channels. The following subsections
investigate the issue in more detail and show several ways of manipulating the
data in order to allow data reduction and cross-channel comparisons. In short,
the options described in the following subsections are:

Raw Data: Provides every archived sample “as is”.

Spreadsheet: Staircase interpolation/filling to form a spreadsheet.

Averaging, Linear Interpolation: Maps the raw data onto specific time stamps.

Plot Binning: Reduces the number of samples for plotting.

2.7.1 “Raw” Data

Even when two channels were served by the same IOC, and originating from
records on the same scan rate, their time stamps will slightly differ because a
single CPU cannot scan several channels at exactly the same time. Tab. 2.1
shows one example.

Time A
17:02:28.700986000 0.0718241
17:02:37.400964000 0.0543581
...

Time B
17:02:28.701046000 -0.086006
17:02:37.510961000 -0.111776
...

Table 2.1: Example Time Stamps for two Channels A and B.

When we try to export this data in what we call raw spreadsheet format, a
problem arises: Even though the two channels’ time stamps are close, they
do not match, resulting in a spreadsheet as shown in Tab. 2.2. Whenever
one channel has a value, the other channel has none and vice versa. This
spreadsheet does not yield itself to further analysis; calculations like A−B will
always yield ’#N/A’ since either A or B is undefined.

2.7.2 “Before or at” Interpretation of Start Times

When you invoke a retrieval tool with a certain start time, the archive will rarely
contain a sample for that exact start time. As an example, you might ask for
a start time of “07:00:00” on some date. Not because you expect to find a
sample with that exact time stamp, but because you want to look at data from
the beginning of that day’s operations shift, which nominally began at 7am.

CHAPTER 2. BACKGROUND 11

Time A B
3/22/2000 17:02:28.700986000 0.0718241 —
3/22/2000 17:02:28.701046000 — -0.086006
3/22/2000 17:02:37.400964000 0.0543581 —
3/22/2000 17:02:37.510961000 — -0.111776
...

Table 2.2: Spreadsheet for raw Channels A and B.

The software underlying all retrieval tools anticipates this scenario by in-
terpreting all start times as “before or at”. Given a start time of “07:00:00”, it
returns the last sample before that start time, unless an exact match is found.
So in case a sample for the exact start time exists, it will of course be returned.
But if the archive contains no such sample, the previous sample is returned.

Applied to Tab. 2.2, channel A, you would get the samples shown in there
not only if you asked for “17:02:28.700986000”, the exact start time, but also
if you asked for “17:02:30”. It is left to the end user to decide whether that
previous sample is still useful at the requested start time, if it’s “close enough”,
or if it needs to be ignored.

2.7.3 Spreadsheet Generation

There are several ways of mapping channels onto matching time stamps. One
is what we call Staircase Interpolation or Filling: Whenever there is no current
value for a channel, we re-use the previous value. This is often perfectly ac-
ceptable because the CA server will only send updates whenever a channel
changes beyond the configured deadband. So if we monitored a channel and
did not receive a new value, this means that the previous value is still valid —
at least within the configured deadband. In the case of scanned channels we
have no idea how a channel behaved in between scans, but if we e.g. look at
water temperatures, it might be safe to assume that the previous value is still
“close enough”. Table 2.3 shows the previously discussed data subjected to
staircase interpolation. Note that in this example there is no initial value for
channel B, resulting in one empty spreadsheet cell. From then on, however,
there are always values for both channels, because any missing samples are
filled by repeating the previous one. Because of the interpretation of start times
explained in section 2.7.2, you would get the result in Tab. 2.3 not only if you
asked for values beginning “3/22/2000 17:02:28.700986000”, but also when
you asked for e.g. “17:02:30”: Since neither channel A nor B have a sample for
that exact time stamp, the retrieval library would select the preceding sample
for each channel, resulting in the output shown in Tab. 2.3.
NOTE: While table 2.3 marks the filled values by printing them in italics, spread-
sheets generated by archive retrieval tools will not accent the filled values in any
way, so care must be taken: Those filled values carry artificial time stamps. If

CHAPTER 2. BACKGROUND 12

you depend on the original time stamps in order to synchronize certain events,
you must not use any form of interpolation but always retrieve the raw data.

Time A B
3/22/2000 17:02:28.700986000 0.0718241 —
3/22/2000 17:02:28.701046000 0.0718241 -0.086006
3/22/2000 17:02:37.400964000 0.0543581 -0.086006
3/22/2000 17:02:37.510961000 0.0543581 -0.111776
...

Table 2.3: Spreadsheet for Channels A and B with Staircase Interpolation;
“filled” values shown in italics.

You did of course notice that the staircase interpolation does not reduce the
amount of data. Quite the opposite: In the above examples, channels A and
B each had 2 values. With staircase interpolation, we don’t get a spreadsheet
with 2 lines of data but 4 lines of data. The main advantage of filling lies is the
preservation of original time stamps.

2.7.4 Averaging, Linear Interpolation

Both averaging and linear interpolation generate artificial values from the raw
data. This can be used to reduce the amount of data: For a summary of the last
day, it might be sufficient to look at one value every 30 minutes, even though
the archive could contain much more data. Another aspect is partly cosmetic
and partly a matter of convenience: When we look at Tab. 2.3, we find rather
odd looking time stamps. While these reflect the real time stamps that the
ArchiveEngine received from the ChannelAccess server, it is often preferable
to deal with data that has time stamps which are nicely aligned, for example
every 10 seconds: 11:20:00, 11:20:10, 11:20:20, 11:20:30 and so on.
To accomplish this, the data is binned. For example, the time span of one day,
24 hours, can be divided into 2880 sections, each of which covers 30 seconds.
Each of those sections is called a “Bin”. The raw samples for the day are then
investigated as follows:

• When we select Averaging, the average over all the samples that fall into
a bin is returned. The center of the bin is used as a time stamp.

• When we select Linear Interpolation, the value of the channel at the bor-
der of each bin is determined via linear interpolation between the last
sample before and the first sample after the border of the bin. The border
of each bin determines the time stamp.

Fig. 2.2 compares the result of retrieving the raw data with averaging and lin-
ear interpolation over 10-second-bins. Averages are determined for the center
of each bin, i.e. 08:48:35, 08:48:45, ..., while linear interpolation generates

CHAPTER 2. BACKGROUND 13

Figure 2.2: Averaging and Linear Interpolation, see text.

values for the bin-borders at 08:48:40, 08:48:50, ... The linearly interpolated
values do in fact exactly fall onto the connecting lines between raw samples if
you consider the full time stamps, but the plotting program chosen to produce
fig. 2.2 rounds down to full seconds.

Note the gap just before 08:49:30: Since the channel was disconnected, no
average is returned for the bin from 08:49:20 to 08:49:30. Averaging and linear
interpolation are further limited to scalar, numeric samples of type double, float
or int. Arrays or strings will not be interpolated.
NOTE: Averaging and linear interpolation must be used with caution. Both
methods can hide important details in the raw data, and it is up to the user to
determine when to use them and with what bin size. If for example you want
to compare several water tank temperatures and you know that the water tem-
perature can only change slowly, linear interpolation for e.g. every 60 seconds
might be a reasonable approach.

On the other hand, consider a channel that monitors radiation counts per
minute. The raw data will mostly reflect the fairly constant background radia-
tion. Of interest are probably only temporary ’spikes’ in the data, since they
indicate radiation incidents that need to be correlated with e.g. beam loss. In-
terpolation of this type of data over 5 minutes will yield useless results. Most
temporary increases in radiation within a bin are lost, you will only see val-

CHAPTER 2. BACKGROUND 14

ues close to the background radiation as they were measured around the bin
borders. Averaging will show a slight increase for those bins that contain a ra-
diation incident, but the magnitude of those ’spikes’ will not at all compare to
the raw data.

2.7.5 Plot-Binning

Figure 2.3: Plot-Binning, see text.

This method is meant for plotting, providing data that — when plotted —
looks very much if not exactly like the raw data, albeit significantly reducing the
number of data points and hence speeding up the plot. To accomplish this,
the data is binned as described in the previous section. The following is then
applied to each bin:

• If there is no sample for the time span of a bin, the bin remains empty.

• If there is one sample, it is placed in the bin.

• If there are two samples, they are placed in the bin.

• If there are more than two samples, the first and last one are placed in the
bin. In addition, two artificial samples are created with a time stamp right

CHAPTER 2. BACKGROUND 15

between the first and last sample. One contains the minimum, the other
the maximum of all raw samples who’s time stamps fall into the bin. They
are presented to the user in the sequence initial, minimum, maximum,
final.

Fig. 2.2 compares the raw data of a Klystron test run, 2400 samples, with
the result of plot-binning, bin size 600 seconds, yielding around 280 samples.
While plot binning significantly reduced the sample count, the overall shape of
the klystron output as well as the outliers are well preserved.

Note that the “before or at” interpretation of start times does not apply for
Plot-Binning: The exact start time of the request is used to determine the be-
ginning of the first bin, and only samples within each bin are considered, there
is no interpolation onto bin-boundaries. In general, the use of N bins can result
in up to 4N data points, since each bin might provide an initial, minimum, max-
imum and final value. In most cases, this results in a significant data reduction.
As long as we plot this such that the width of the plot in pixels is close to the
number of bins, there is little visual difference between the raw data plot and
the binned plot. Typical numbers for N are around the width of a computer
screen in pixels, that is 800. . . 1200. For the special case were 3 raw values
happen to fall into every bin, we will get 4N instead of 4N data points. For
typical N , that is a slight but not dramatic increase in retrieval or plotting time.
It is neglectable compared to the fact that binning guarantees an upper limit of
4N data points, no matter how many raw samples there are.

Chapter 3

ArchiveEngine

Figure 3.1: Archive Engine, refer to text.

The ArchiveEngine is an EPICS ChannelAccess client. It can save any chan-
nel served by any ChannelAccess server. One ArchiveEngine can archive data
from more than one CA server. For more details on the CA server data sources,
refer to section 2.2 on page 4. The ArchiveEngine supports the sampling op-
tions that were described in section 2.3 on page 5. The ArchiveEngine is con-
figured with an XML file that lists what channels to archive and how. Each given
channel can have a different periodic scan rate or be archived in monitor mode
(on change). One design target was: Archive 10000 values per second, be it
1000 channels that change at 10Hz each or 10000 channels which change at
1Hz.

The ArchiveEngine saves the full information available via ChannelAccess:
The value, time stamp and status as well as control information like units, dis-
play and alarm limits, ... The data is written to an archive in the form of local

16

CHAPTER 3. ARCHIVEENGINE 17

disk files, specifically index and data files. Chapter 8 provides details on the
file formats. While running, status and configuration of the ArchiveEngine are
accessible via a built-in web server, accessible via any web browser on the
network. The chapter on data retrieval, beginning on page 29, introduces the
available retrieval tools that allow users to look at the archived data.

3.1 Configuration

The ArchiveEngine expects an XML-type configuration file that follows the doc-
ument type description format from listing 3.1 (see section 7.2.1 on DTD file
installation). Listing 3.2 provides an example. In the following subsections, we
describe the various XML elements of the configuration file.

<?xml vers ion= ” 1.0 ” encoding= ”UTF−8”?>
<!−− DTD f o r the ArchiveEngine Con f i gu ra t i on −−>
<!−− Note t h a t we do not a l low empty c o n f i g u r a t i o n s : −−>
<!−− Each con f i g . must con ta in a t l e a s t one group , −−>
<!−− and each group must con ta in a t l e a s t 1 channel . −−>
<!ELEMENT engineconf ig ((w r i t e p e r i o d | ge t t h resho ld |

f i l e s i z e | i g n o r e d f u t u r e |
b u f f e r r e s e r v e |
max repeat count | disconnect)∗ ,
group+)>

<!ELEMENT group (name, channel+)>
<!ELEMENT channel (name, per iod , (scan | moni tor) , d i sab le ?)>
<!ELEMENT w r i t e p e r i o d (#PCDATA)><!−− i n t seconds −−>
<!ELEMENT ge t t h resho ld (#PCDATA)><!−− i n t seconds −−>
<!ELEMENT f i l e s i z e (#PCDATA)><!−− MB−−>
<!ELEMENT i g n o r e d f u t u r e (#PCDATA)><!−− double hours −−>
<!ELEMENT b u f f e r r e s e r v e (#PCDATA)><!−− i n t t imes −−>
<!ELEMENT max repeat count (#PCDATA)><!−− i n t t imes −−>
<!ELEMENT disconnect EMPTY>
<!ELEMENT name (#PCDATA)>
<!ELEMENT per iod (#PCDATA)><!−− double seconds −−>
<!ELEMENT scan EMPTY>
<!ELEMENT moni tor EMPTY>
<!ELEMENT d isab le EMPTY>

Listing 3.1: XML DTD for the Archive Engine Configuration

CHAPTER 3. ARCHIVEENGINE 18

<?xml vers ion= ” 1.0 ” encoding= ”UTF−8” standalone= ” no ”?>
<!DOCTYPE engineconf ig SYSTEM ” eng ineconf ig . dtd ”>
<engineconf ig>

<wr i t e pe r i od >30</ w r i t e pe r i od >
<ge t th resho ld >20</ ge t th resho ld >
< f i l e s i z e >30</ f i l e s i z e >
< i gno red fu tu re >1.0</ i gno red fu tu re >
<bu f fe r rese rve >3</ bu f f e r rese rve >
<max repeat count >120</max repeat count>
<group>

<name>Vacuum</name>
<channel><name>vac1</name>

<per iod >0.1</ per iod><moni tor />
</channel>
<channel><name>vac2</name>

<per iod >1</per iod><moni tor /><d isab le />
</channel>
<channel><name>vac3</name>

<per iod >2</per iod><scan/>
</channel>

</group>
<group>

<name>RF</name>
<channel><name>r f1 </name>

<per iod >1</per iod><moni tor />
</channel>
<channel><name>r f2 </name>

<per iod >1</per iod><moni tor />
</channel>
<channel><name>r f3 </name>

<per iod >1</per iod><scan/>
</channel>

</group>
</ engineconf ig>

Listing 3.2: Example Archive Engine Configuration

CHAPTER 3. ARCHIVEENGINE 19

3.1.1 write period tag

This is a global option that needs to precede any group and channel defini-
tions. It configures the write period of the Archive Engine in seconds. The
default value of 30 seconds means that the engine will write to Storage every
30 seconds.

3.1.2 get threshold tag

This global option determines when the archive engine switches from “Sam-
pled” operation to “Sampled using monitors” as described in section 2.3. De-
faults to 20 seconds.

3.1.3 file size tag

This global option determines when the archive engine will create a new data
file. The default of 100 means that the engine will continue to write to a data
file until that file reaches a size of approximately 100 MB, at which point a new
data file is created.

3.1.4 ignored future tag

Defines “too far in the future” as “now + ignored future”. It is specified in
hours, and samples with time stamps beyond that time are ignored. Details:
For strange reasons, the Engine sometimes receives values with invalid time
stamps. The most common example is a “Zero” time stamp: After an IOC re-
boots, all records have a zero time stamp until they are processed. For passive
records, as commonly used for operator input, this time stamp will stay zero
until someone enters a value on an operator screen or via a save/restore util-
ity. The Engine cannot archive those values because the retrieval relies on the
values being sorted in time. A zero time stamp does not fit in.

Should an IOC (for some unknown reason) produce a value with an outra-
geous time stamp, e.g. ”1/2/2035”, another problem occurs: Since the archiver
cannot go back in time, it cannot add further values to this channel until the date
”1/2/2035” is reached. Consequently, future time stamps have to be ignored.
(default: 6h)

3.1.5 buffer reserve tag

To buffer the samples between writes to the disk, the engine keeps a memory
buffer for each channel. The size of this buffer is rounded up to the next integer
from

buffer reserve × write period

scan period

CHAPTER 3. ARCHIVEENGINE 20

Since writes can be delayed by other tasks running on the same computer
as well as disk activity etc., the buffer is bigger than the minimum required:
buffer reserve defaults to 3.

3.1.6 max repeat count tag

When sampling in a scanned mode (as opposed to monitored), the engine
stores only new values. As long as a value matches the preceding sample, it
is not written to storage. Only after the value changes, a special value marked
with a severity of ARCH REPEAT and a status that reflects the number of re-
peats is written, then the new sample is added.

This procedure conserves disk space. The disadvantage lies in the fact that
one does not see any new samples in the archive until the channel changes,
which can be disconcerting to some users. Therefore the max repeat count
configuration parameter was added. It forces the engine to write a sample
even if the channel has not change after the given number of repeats. The
default is 120, meaning that a channel that is scanned every 30 seconds will
be written once an hour even if it had not changed.

3.1.7 disconnect tag

This global option selects how “disabled” channels (see 3.1.9) are handled. By
default, disabled channels will stay connected via ChannelAccess, but no val-
ues are archived. When setting the “disconnect” option, disabled channels will
instead disconnect from ChannelAccess and then, later, attempt to reconnect
once the channel is again enabled.

In general, it is a good idea to stay with the default. That way we leave the
connection handling to the ChannelAccess client library, which is optimized to
do this. The engine will still receive new data, and as soon as the channel is
re-enabled, it can thus store the most recent value.

The disconnect feature was added for the rare case that you have IOCs
that are temporarily off-line, and some PV will tell you about the fact. You can
then use that PV to disable and disconnect the affected channels, preventing
the ChannelAccess client library from continuing to issue connection attempts.
Another example would be that you want to reduce the network load of contin-
uing CA monitors for channels that are archived via monitors at a high rate but
disabled. Most likely, though, checking your channels’ update rates or using a
temporary archive engine might be the better solution.

3.1.8 group tag

Every channel belongs to a group of channels. The configuration file must de-
fine at least one group. For organizational or esthetic purposes, you might add
more groups. One important use of groups is related to the “disable” feature,
see section 3.1.9.

CHAPTER 3. ARCHIVEENGINE 21

name tag

This mandatory sub-element of a group defines its name.

3.1.9 channel tag

This element defines a channel by providing its name and the sampling options.
A channel can be part of more than one group. To accomplish this, simply list
the channel as part of all the groups to which it should belong.

name tag

This mandatory sub-element of a channel defines its name. Any name accept-
able for ChannelAccess is allowed. The archive engine does not perform any
name checking, it simply passes the name on to the CA client library, which in
turn tries to resolve the name on the network. Ultimately, the configuration of
your data servers decides what channel names are available.

period tag

This mandatory sub-element of a channel defines the sampling period. In case
of periodic sampling, this is the period at which the periodic sampling attempts
to operate. In case of monitored channels (see next option), this is the esti-
mated rate of change of the channel. The period is specified in units of sec-
onds.

If a channel is listed more than once, for example as part of different groups,
the channel will still only be sampled once. The sampling mechanism is deter-
mined by maximizing the data rate. If, for example, the channel “X” is once
configured for periodic sampling every 30 seconds and once as a monitor with
an estimated period or one second, the channel will in fact be monitored with
an estimated period of 1 second.

scan tag

Either “monitor” or “scan” need to be provided as part of a channel configura-
tion to select the sampling method. True to its name, “scan” selects scanned
operation, where the preceding “period” tag determines the sampling period,
that is the time between taking samples. As an example, scanned operation
with a period of 60 means: Every 60 seconds, the engine will write the most
recent value of the channel to the archive.

monitor tag

As an alternative to the “scan” tag, “monitor” can be used, requesting moni-
tored operation, that is: An attempt is made to store each change received via

CHAPTER 3. ARCHIVEENGINE 22

ChannelAccess. The “period” tag is used to determine the in-memory buffer
size of the engine. That means: If samples arrive much more frequently than
estimated via the “period” tag, the archive engine might drop samples. (See
also “buffer reserve”, 3.1.5).

disable tag

This optional sub-element of a channel turns the channel into a “disabling”
channel for the group. Whenever the value of the channel is above zero, sam-
pling of the whole group will be disabled until the channel returns to zero or
below zero (see 3.1.7 for additional disconnection).

This is useful for e.g. a group of channels related to power supplies: When-
ever the power supply is off, we might want to disable scanning of the power
supplies’ voltage and current because those channels will only yield noise. By
disabling the sampling based on a “Power Supply is Off” channel, we can avoid
storing those values which are of no interest.

The channel which is “disabling” its group will stay enabled. Internal to
the archive engine, it obviously needs to stay connected and enabled. How
else would it otherwise learn when to re-enable its group? Since it might be
of interest to learn which values of the “disabling” channel caused the other
channels in the group to be enabled or disabled, its samples are also added to
the archive: Disabling channels are never disabled themselves.
NOTE: There is no “enabling” feature, meaning: The channel marked as “dis-
able” will disable its group whenever it is above zero. There is no “enable” flag
that would enable archiving of a group whenever the flagged channel is above
zero. If you want it the other way around, you typically add a CALC record to
handle the inversion.

3.2 Example for Sampling a Channel

Assume that a channel “fred” emits monitors at 1 Hz. These are some exam-
ples for sampling it, and what one can expect to find in the archive as a result.

• “fred 1 Monitor”
Every value sent by fred is archived. Might be a good idea for some
channels, but don’t try to store every value of every PV of your control
system indefinitely unless you are prepared to deal with that amount of
data.

Per default, the engine will write every 30 seconds. So it will have to al-
locate a buffer for about 30 samples, based on our estimate of 1 second
between incoming monitors. With the default buffer reserve of 3, it will
actually allocate a buffer for 90 values, so we don’t loose data when the
engine should get delayed in writing. On the other hand, when the com-
puter is terribly busy, we might not receive any more values, either. In any
case, the chances of overflowing the data buffer are slim.

CHAPTER 3. ARCHIVEENGINE 23

• “fred 1”
The engine will sample once per second, and the channel changes once
a second, so you might think that you archive every value just as in the
previous example. Well, the sample period of the engine running on the
host and the scanning of the channel on the CA server are not synchro-
nized, plus there are additional network delays. So you will sometimes
miss values whenever more than one sample arrived between the en-
gine’s sampling, or get duplicate values whenever no new value arrived
between the engine’s sampling. Bad idea.

Except: With the default get threshold of 20 seconds, the engine will not
issue a ’get’ every second. It will instead use a monitor, and ignore all
data that arrives faster than one second. So this specific case will proba-
bly give the exact same result as the previous case!

• “fred 60”
The engine will sample every 60 seconds. This is a very reasonable
setup: The channel samples at 1 Hz, so you get frequent updates for the
operator interface, but for the archive we only care about a sample per
minute and save storage space by ignoring finer detail.

With the default get threshold, that’s it. If you raised the threshold, for
example to 70 seconds, the engine would use monitors, so it would re-
ceive the 1 Hz data and ignore 59 samples each minute. That is probably
a waste of network bandwidth. You might, on the other hand, get more
consistent time stamps, since the ’60 second’ period is now based on the
time stamps which the IOC sends, and not the host clock.

While this sounds like a neat trick, it might be cleaner to create a channel
on the CA server which only updates every 60 seconds, then use “fred
60 Monitor” to store each such sample.

• “fred 60 Monitor”
Probably an error. The engine is instructed to save every incoming moni-
tor. Expecting one value to arrive about every 60 seconds, and assuming
a write period of 30 seconds with buffer reserve of 3, the engine will allo-
cate a buffer for 3 values.

In reality, however, about 30 values arrive in every 30 second write cycle.
You will see buffer “overrun” errors, because the engine overwrites older
samples in its ring buffer with newly arriving samples, and the archive will
contain the last 3 samples that happened to be in the buffer at write-to-
disk time.

CHAPTER 3. ARCHIVEENGINE 24

3.3 Starting and Stopping

3.3.1 Starting

The ArchiveEngine is a command-line program that displays usage information
similar to the following:

USAGE: ArchiveEngine [Options] < conf ig− f i l e > < index− f i l e >

Options :
−po r t <por t > Web server TCP por t
−d e s c r i p t i o n < t ex t > d e s c r i p t i o n f o r HTTP d isp lay
−log < f i lename > w r i t e l o g f i l e
−nocfg d isab le on l i ne c o n f i g u r a t i o n

Minimally, the engine is therefore started by simply naming the configuration
file and the path to the index file, which can be in the local directory:

ArchiveEngine eng ineconf ig . xml . / index

After collecting some data, the ArchiveEngine will create the specified index file
together with data files in the same directory that contains the index file.

3.3.2 “-log” Option

This option causes the ArchiveEngine to create a log file into which all the
messages that otherwise only appear on the standard output are copied.

This, however, only applies to messages which the engine writes out. Other
code, including the ChannelAccess client library, might produce further mes-
sages, which still go the the standard output or error output streams.

3.3.3 “-description” Option

This option allows setting the description string that gets displayed on the main
page of the engine’s built-in HTTP server, see section 3.4.

3.3.4 “-port” Option

This option configures the TCP port of the engine’s HTTP server, again see
section 3.4. The default port number is 4812.

If you think this number stinks for a default, you are not too far off base:
In Germany, there is a very well known Au-de-Cologne called 4711. Since
forty-seven-eleven is therefore easily remembered by anybody from Germany,
adding 1 to each 47 and 11 naturally results in an equally easy to remember
4812. No, the archiver development is not funded by the 4711 company.

CHAPTER 3. ARCHIVEENGINE 25

3.3.5 “-nocfg” Option

This option disables the “Config” page of the engine’s HTTP server, in case you
want to prohibit online changes.

3.3.6 The “archive active.lck” File

You can only run one ArchiveEngine per directory. This is meant to prevent
duplicate startups of the same engine, potentially damaging the index and data
files. When running, this lock file is created. The ArchiveEngine will refuse to
run if this file already exists. After shutdown, the ArchiveEngine will remove
this lock file. If the ArchiveEngine crashes or is not stopped gracefully by the
operating system, this lock file will be left behind. You cannot start the Ar-
chiveEngine again until you remove the lock file. This is a reminder for you to
check the cause of the improper shutdown and maybe check the data files for
corruption.
NOTE: This is no 100% dependable check. Data corruption occurs when two
engines attempt to write to the same index and data files. The lock file, how-
ever, is created in the directory where the ArchiveEngine was started, which
could be different from the directory where the data gets written. Example:

cd / some / d i r
ArchiveEngine −p 7654 eng ineconf ig . xml / my/ data / index &

cd / another / d i r
ArchiveEngine −p 7655 eng ineconf ig . xml / my/ data / index &

This is a sure-fire way to corrupt the data in “/my/data/index” and the accompa-
nying data files because two ArchiveEngines are writing to the same archive.

3.3.7 More than one ArchiveEngine

You can run multiple ArchiveEngines on the same computer. But they must

1. be in separate directories, writing to different archives. See the preceding
discussion of the lock file.

2. use a different TCP port number for the built-in web server

In practice this means that you have to create different directories on the disk,
one per ArchiveEngine, and in there run the ArchiveEngines with different ”-p
<port>” options.

3.3.8 Stopping

While the ArchiveEngine can be stopped by pressing “CTRL-C” or using the
equivalent “kill” command in Unix, the preferred method is via the built-in web
server. Use any web browser and point it to

CHAPTER 3. ARCHIVEENGINE 26

h t t p : / /<host where engine i s running >:<por t >/ s top

Per default, the engine uses 4812, so you could use the following URL to stop
that engine on the local computer:

h t t p : / / l o c a l h o s t :4812/ stop

3.4 Engine Web Server

Figure 3.2: Main Page of Archive Engine’s HTTPD

The ArchiveEngine has a built-in web server (HTTP Daemon) for status
and configuration information. You can use any web browser to access this
web server. You can do that on the computer where the ArchiveEngine is
running as well as from other computers, be it a PC or Macintosh or other

CHAPTER 3. ARCHIVEENGINE 27

system as long as that computer can reach the machine that is running the
ArchiveEngine via the network. You do not need a web server like the Apache
web server for Unix or the Internet Information Server for Win32 to use this.
The ArchiveEngine itself acts as a web server.

You cannot view archived data with this mechanism. See the documenta-
tion on data retrieval (chapter 4) for that, because the archive engine’s HTTPD
is meant for access to the status and configuration of the running engine, not
for accessing the data samples.

To access the ArchiveEngine’s web server, you need to know the Internet
name of the machine that is running the ArchiveEngine as well as the TCP port.
If you are on the same machine, use “localhost”. The port is configured when
you start the ArchiveEngine, it defaults to 4812. Then use any web browser
and point it to

h t t p : / /<host where engine i s running >:<por t>

Example for an ArchiveEngine running on the local machine with the default
port number:

h t t p : / / l o c a l h o s t :4812

The start page of the ArchiveEngine web server should look similar to the one
shown in Fig. 3.2. By following the links, one can investigate the status of the
groups and channels that the ArchiveEngine is currently handling. The “Config”
page allows limited online-reconfiguration. Whenever a new group or channel
is added, the engine attempt to write a new config file called onlineconfig.xml
in the directory where is was started. It is left to the user to decide what to
do with this file: Should it replace the original configuration file, so that online
changes are preserved? Or should it be ignored, because online changes are
only meant to be temporary and with the next run of the engine, the original
configuration file will be used?

Note also that the ArchiveEngine does not allow online removal of channels
and groups. The scan mechanism of a channel can only be changed towards
a higher scan rate or lower period, similar to the handling of multiply defined
channels in a configuration file. Refer to the section discussing the “period” tag
on page 21.

3.5 Threads

The ArchiveEngine uses several threads:

• A main thread that reads the initial configuration and then enters a main
loop for the periodic scan lists and writes to the disk.

• The ChannelAccess client library is used in its multi-threaded version.
The internals of this are beyond the control of the ArchiveEngine, the
total number of CA client threads is unknown.

CHAPTER 3. ARCHIVEENGINE 28

• The ArchiveEngine’s HTTP (web) server runs in a separate thread, with
each HTTP client connection again being handled by its own thread. The
total number of threads therefore depends on the number of current web
clients.

As a result, the total number of threads changes at runtime. Though these
internals should not be of interest to end users, this can be confusing especially
on older releases of Linux where each thread shows up as a process in the
process list. On Linux version 2.2.17-8 for example we get process table entries
as shown in Tab. 3.3 for a single ArchiveEngine, connected to four channels
served by excas, no current web client. The only hint we get that this is in fact
one and the same ArchiveEngine lies in the consecutive process IDs.

PID TTY TIME CMD
29721 pts / 5 00 :00 :00 ArchiveEngine
29722 pts / 5 00 :00 :00 ArchiveEngine
29723 pts / 5 00 :00 :00 ArchiveEngine
29724 pts / 5 00 :00 :00 ArchiveEngine
29725 pts / 5 00 :00 :00 ArchiveEngine
29726 pts / 5 00 :00 :00 ArchiveEngine
29727 pts / 5 00 :00 :00 ArchiveEngine
29728 pts / 5 00 :00 :00 ArchiveEngine

Listing 3.3: Output of Linux ’ps’ process list command, see text.

The first conclusion is that one should not be surprised to see multiple Ar-
chiveEngine entries in the process table. The other issue arises when one tries
to ’kill’ a running ArchiveEngine. Though the preferred method is via the en-
gine’s web interface, one can try to send a signal to the first process, the one
with the lowest PID.

Chapter 4

Data Retrieval

Data retrieval requirements can cover a wide range. One person might be
interested in the temperature of a water tank during the last night. For this, it is
probably sufficient to retrieve the raw data for the respective channel and plot
it. If, on the other hand, we want to look at the same temperature for the last
3 month, the raw data will amount to too many samples and some sort of data
reduction or interpolation is helpful. We already mentioned the problems of
time stamp correlation that arise when comparing different channels in section
2.7.

The Channel Archiver toolset includes some generic tools that can be used
“as is”. While those try to cover many data retrieval requirements, certain re-
quests can only be handled in customized data mining programs (which might
be e.g. perl scripts). For this, the archiver offers a network data server. In short,
these are your fundamental options:

• Java Archive Client
This is meant to be the data client. Use it to browse the available data,
generate plots, export data to spreadsheets, from any computer on the
network, by accessing the data server.

• ArchiveExport
A command-line tool. Less convenient to use, requires direct access to
the data files. Use this when the Java Archive Client or network data
server are not available.

• Archive Data Server
Serves data to the Java Archive Client. In addition, you can access the
documented XML-RPC protocol of the data server from most program-
ming languages. Use this method for customized data mining programs.

• “Storage” Library
A C++ library for accessing local data files. Use for specialized C++ code.

29

CHAPTER 4. DATA RETRIEVAL 30

4.1 Java Archive Client

This tool is meant to be the main data retrieval tool. It provides a graphical
user interface to allow data browing. It is based on Java and hence usable on
many operating systems. It accesses the data via the DataServer described
in section 4.3, which means that it can access the data via the network. You
invoke the java archive client with the URL of the web server that hosts the
archive data server:

a rch ivev iewer −u \
h t t p : / / datahost / cgi−bin / xmlrpc / ArchiveDataServer . cg i

The interactive GUI shown in Fig. 4.1 then allows you to select one of the
archives served by the network data server, investigate the available chan-
nels, perform basic calculations on single or multiple channels, export data in
spreadsheet format and much more. A separate manual descibes the viewer.

Figure 4.1: Java Archive Cient.

4.2 ArchiveExport

ArchiveExport is a command-line tool for local tests, i.e. it does not connect to
the archive data server, but instead requires that you have read access to the
index and data files. It is mostly meant for testing.

CHAPTER 4. DATA RETRIEVAL 31

When invoked without valid arguments, it will display a command descrip-
tion.

USAGE: Arch iveExpor t [Options] < index f i l e > {channel}

Options :
−verbose Verbose mode
− l i s t L i s t a l l channels
− i n f o Time−range i n f o on channels
−s t a r t < t ime > Format :

”mm/ dd / yyyy [hh :mm: ss [. nano−secs]] ”
−end < t ime > (exc lus i ve)
− t e x t Inc lude t e x t column f o r

s ta tus / s e v e r i t y
−match < reg . exp . > Channel name pa t te rn
− i n t e r p o l a t e <seconds > i n t e r p o l a t e values
−output < f i l e > output to f i l e
−gnuplo t generate GNUPlot command f i l e
−Gnuplot generate GNUPlot output

f o r Image

ArchiveExport produces spreadsheet-type output in TAB-separated ASCII text,
suitable for import into most spreadsheet programs for further analysis. Per
default, ArchiveExport uses Staircase Interpolation to map the data for the re-
quested channels onto matching time stamps, but one can select Linear In-
terpolation via the “-interpolate” option. When GNUPlot output is selected,
the Plot-Binning method is used, where the bin size is determined by the “-
interpolate” argument. See section 2.7 on page 10 for details.

Assuming that your current working directory contains an archive index file
that is aptly named “index”, the following invocation will generate a spreadsheet
file “data.txt” with the data of all channels that match the pattern “IOC” for the
date of January 27, 2003:

Arch iveExpor t index −m IOC \
−s ” 01/27/2003 ” \
−e ” 01/28/2003 ” >data . t x t

To plot this in OpenOffice, you could create a new spreadsheet, then use the
menu item Insert/Sheet/FromFile, select the file “data.txt” and configure the
text import dialog to use “Separated by Tab”. You will notice that even though
the original text file contains time stamps with nano-second resolution, for ex-
ample “01/27/2003 23:57:25.579346999”, the spreadsheet program might use
a default representation of e.g. “01/27/03 23:57 pm”. In order to see the full
time stamp detail, one needs to reformat those spreadsheet columns with a
user-defined format like “MM/DD/YYYY HH:MM:SS.000000000”. If you use
Microsoft Excel, you might be limited to a format with millisecond resolution:
“MM/DD/YYYY HH:MM:SS.000”. For graphing the data, the most suitable op-
tion is often an “X-Y-Graph”, using the first row for labels, with the data series

CHAPTER 4. DATA RETRIEVAL 32

taken from the columns.
The following call sequence will generate a GNUPlot data file “data” to-

gether with a GNUPlot command file “data.plt” and execute it within GNUPlot:

Arch iveExpor t index −m IOC \
−s ” 01/27/2003 ” \
−e ” 01/28/2003 ” −o data −gnu

gnuplo t
G N U P L O T
Version 3 . 7 pa tch leve l 3

. . . .
gnuplot > load ’ data . p l t ’

4.3 Data Server

The archiver toolset includes a network data server. By running this data server
on a computer that has physical access to your archived data, be it because
the data resides on a local disk or an NFS-mapped volume, other machines on
the network can get read-access to your data.

Figure 4.2: Data Server, refer to text.

The data server is hosted by a web server, using the XML-RPC protocol to
serve the data. This means that software running on disparate operating sys-
tems, running in different environments can access your data over the Internet

CHAPTER 4. DATA RETRIEVAL 33

via a URL. As an example, your data server might be a Linux machine on a sub-
net behind a firewall. After you configure the firewall to pass HTTP requests,
any Linux, Win32, Macintosh computer both inside or outside of the firewall can
access the data from within perl, python or tcl scripts, programs written in C,
C++ or Java, actually pretty much any programming language. As illustrated in
fig. 4.2, the client program sends its requests to a web server, which forwards
it to the data server that is running as a CGI tool under the web server. The
dataserver accesses the relevant archives — you determine which ones are
available via a configuration file — and returns the data though the web server
to the client program. You can configure access security via e.g. the Apache
web server configuration.
NOTE: The fact that the data server is hosted by a web server, accessible via
a URL, does not imply that you can use any web browser to retrieve data. You
have to use the XML remote procedure call protocol described in section 4.4 on
page 38. XML-RPC handles the network connections, data type conversions,
and XML-RPC libraries are available for most programming languages. We
provide the Java Archive Client (see section 4.6) as a generic, interactive data
client.

4.3.1 Installation

After successful compilation in ChannelArchiver/XMLRPCServer, you should
have a program “XMLRPCServer/O.$EPICS HOST ARCH/ArchiveDataServer”.
You have to install it as a CGI tool under a web server, passing an environ-
ment variable “SERVERCONFIG” to it which points to a configuration file. This
means

• You need a web server like Apache running on a computer with access
to the archive data.

• You need to know how to start, stop and configure that web server.

• You need to know how to install, configure and possibly troubleshoot CGI
tools under that web server.

• You need to create a configuration file for the ArchiveDataServer.

With all but the last point you are very much on your own, because this manual
cannot even try to describe all the possible configurations and errors. What
follows is only an example setup for the Apache Web Server under Linux and
Mac OS X. Your web server, even if it is also a version of Apache, is likely to be
quite different.

1. Locate your web server configuration file. This is is often a variant of
“/etc/httpd/conf/httpd.conf”. For Mandrake 10, check “/etc/httpd/conf/-
commonhttpd.conf”, for Mac OS X it’s “/etc/httpd/httpd.conf”.

CHAPTER 4. DATA RETRIEVAL 34

2. After each change to the configuration, you will have to restart the web
server. This is often done via “/etc/rc.d/initd/httpd restart” or “/usr/sbin/a-
pachectl restart”.

3. Create a new web directory for the archiver with a CGI sub-directory. This
is typically done under /var/www/html, except for Mac OS X, where you
would use /Library/WebServer/Documents. Check the “DocumentRoot”
variable in your web server configuration file for the correct location and
adjust the following accordingly.

mkdir / var /www/ html / a rch ive
mkdir / var /www/ html / a rch ive / cg i

Change the permissions of those directories to your liking. Usually, “ev-
erybody” needs read and execution access, because the web server will
run CGI programs as a low-priviledged user. Our main interest here is
the CGI”cgi” subdirectory. You can use the “archive” directory to store
e.g. the dtd files or web pages with user information that relate to the
archive setup at your site.

4. Copy the ArchiveDataServer binary into the cgi directory as “ArchiveDa-
taServer.cgi”. In this example, both the “cgi” directory and the “.cgi” ex-
tension of “ArchiveDataServer.cgi” are important, because they identify
the binary as a CGI program.

5. Assert that the web server can execute the ArchiveDataServer, that it
recognizes it as a CGI tool, by adding the following to the Apache config
file:

Check t h a t environment va r i a b l e s are ava i l ab le ,
asser t t h a t t h i s d i r e c t i v e i s not commented−out .
Your web server might use a d i f f e r e n t module name
or l oca t i on , i n my case i t happened to be t h i s :
LoadModule env module l i bexec / h t tpd / mod env . so
AddModule mod env . c

Check t h a t CGI i s enabled , i . e . asser t t h a t
these are not commented−out :
LoadModule cgi module l i bexec / h t tpd / mod cgi . so
AddModule mod cgi . c

This t e l l s Apache t h a t ArchiveDataServer . cg i
i s a CGI program because of the . cg i extens ion :
AddHandler cgi−s c r i p t . cg i

<D i r e c t o r y / var /www/ html / archive>
Order Allow , Deny
Al low from A l l

CHAPTER 4. DATA RETRIEVAL 35

</ D i rec to ry >

Al low cgi−s c r i p t s i n the / cg i d i r e c t o r y :
<D i r e c t o r y / var /www/ html / a rch ive / cgi>

SetEnv EPICS TS MIN WEST 300
SetEnv LD LIBRARY PATH / usr / l o c a l / l i b : . . .
SetEnv SERVERCONFIG \

/ var /www/ html / a rch ive / cg i / se rve rcon f i g . xml

I a lso l i k e to enable per l−CGI , but t h a t i s
unre la ted to the a rch i ve r
Per lHandler Apache : : Reg is t ry
PerlSendHeader On

This d i r e c t i v e enables CGI f o r t h i s d i r . :
Options +ExecCGI

</ D i rec to ry >

The LD LIBRARY PATH needs to list all the directories that contain shared
libraries which your ArchiveDataServer.cgi uses. In most cases, this in-
cludes the

• install location of the expat and XML-RPC libraries, often /usr/lo-
cal/lib,

• “lib” subdirectories of EPICS base and EPICS extensions, some-
thing like /ade/epics/supTop/base/R3.14.6/lib/linux-x86:...

The SERVERCONFIG variable needs to point to your server configura-
tion file, more about which next. The ExecCGI option is essential to allow
CGI functionality. You can skip the Perl configuration for the data server.

4.3.2 Configuration

You need to prepare an XML-formatted configuration file for the ArchiveDa-
taServer that follows the DTD from listing 4.1 (see section 7.2.1 on DTD file
installation). Note that the ArchiveDataServer might not verify your configura-
tion file, so you are strongly encouraged to use a tool like ’xmllint’ on Linux
to check your configuration against the DTD. Listing 4.2 shows one example
serverconfig.xml which lists two archives to be served. Client programs will
internally use the respective ’key’ to access them.

4.3.3 Testing, Debugging

Section 4.5 describes a perl client to the network data server. It can be used
to see if all the archives you listed in the configuration are actually accessible
and so on.

CHAPTER 4. DATA RETRIEVAL 36

<?xml vers ion= ” 1.0 ” encoding= ”UTF−8”?>
<!−− DTD f o r the XML−RPC Data Server Con f i gu ra t i on −−>
<!ELEMENT serve rcon f i g (a rch ive +)>
<!ELEMENT arch ive (key , name, path)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT path (#PCDATA)>

Listing 4.1: XML DTD for the Data Server Configuration

<?xml vers ion= ” 1.0 ” encoding= ”UTF−8”?>
<!DOCTYPE serve rcon f i g SYSTEM ” se rve rcon f i g . dtd ”>
<servercon f ig >
<archive>

<key>1</key>
<name>Vacuum</name>
<path >/home / data / vac / index </path>

</ arch ive>
<archive>

<key>2</key>
<name>RF−LLRF</name>
<path >/home / data / l l r f / index </path>

</ arch ive>
</ se rve rcon f ig >

Listing 4.2: Example Data Server Configuration

In case that client tool gets nothing but errors, debugging of the CGI Ar-
chiveDataServer can be difficult, since one cannot easily peek into the running
(or failing to run) program when it is launched by the web server.

The XMLRPCServer directory contains some self-tests in test.sh, where the
ArchiveDataServer is run without an actual web server. If test.sh works, your
ArchiveDataServer program is fundamentally functional.

If it doesn’t work from within your web server, try changing your user ID to
’guest’ or ’nobody’, somebody similar to the user ID used by the web server
when it runs your CGI tool. Set the LD LIBRARY PATH as you set it for the
web server cgi directory, and try test.sh again.
You can also try this to see more of the web server response:

t e l n e t my web server host 80
GET / arch ive / cg i / ArchiveDataServer . cg i HTTP/1.0 <RETURN>
<RETURN>

You should see an error message about “XML-RPC Fault: Expected HTTP
method POST”, indicating that the data server was launched correctly and was

CHAPTER 4. DATA RETRIEVAL 37

looking for a proper XML-RPC request. If you see only pages of binary-looking
garbage, your web server doesn’t recognize ArchiveDataServer.cgi as a CGI
program, and instead of running it, you get a copy of it.

4.3.4 Standalone Data Server

The preferred deployment of the network data server is within a standard web
server as described in the previous sections. For experiments, however, there
is a way to use a version of the data server which combines the simple “Abyss”
web server and the network data server into one standalone program.
Advantages:

• Easier to configure than a standard web server. No serverconfig.xml, no
serverconfig.dtd, no CGI setup trouble. When running “ArchiveDataServer-
Standalone”, you will see right away if e.g. a shared library is missing,
while the “ArchiveDataServer” CGI-plugin to a web server would simply
not run for reasons harder to diagnose.

• Ordinary users beyond “root” or “Administrator” can run the standalone
data server.

Disadvantages:

• The Abyss HTTPD still requires some configuration.

• Compared to e.g. the Apache web server, there is much less control over
who can access the data.

• Currently limited to serving a single archive per running instance of the
standalone data server. The ’key’ of that archive is fixed to ’1’ and the
’name’ to ’Archive’. Under a standard web server, one can run more than
one ArchiveDataServer and configure each one to serve multiple archives
with selected key and name.

4.3.5 Running ArchiveDataServerStandalone

After successful compilation in ChannelArchiver/XMLRPCServer, you will have
a program “ArchiveDataServerStandalone”.

1. For starters, you can test in the “ChannelArchiver/DemoData” directory,
but typically you would copy all “abys*” files and directories from there
into the directory where you intend to run the standalone data server.

2. Edit “abyss.conf” to suit your needs. Most users might only have to adjust
the “Port” option, which defaults to 8080, and the “ServerRoot” variable.

3. Run the data server with the abys config file and the path of the archive’s
index. When inside DemoData, this would be an example:

CHAPTER 4. DATA RETRIEVAL 38

> ArchiveDataServerStandalone abyss . conf index
ArchiveDataServerStandalone Running
Unless your ’ abyss . conf ’ se lec t s
a d i f f e r e n t po r t number ,
the data should now be a v a i l a b l e v ia the XML−RPC URL

h t t p : / / l o c a l h o s t :8080/RPC2

The data is now accessible via XML-RPC by pointing the ArchiveDataClient.pl
test tool or the Java ArchiveViewer to the URL

h t t p : / /<hostname>:<por t >/RPC2

Example:

h t t p : / / l o c a l h o s t :8080/RPC2

4.4 XML-RPC Protocol

The following is a description of the calls implemented by the archive data
server based on the XML-RPC protocol. For details on XML-RPC, including
the specifications and examples of how to use it from within C, C++, Java, perl,
please refer to http://www.xmlrpc.com.

Users of Java should probably utilize the Java archive data client library
provided with the ChannelArchiver. Users of other programming environments
need to refer to the following.

4.4.1 archiver.info

This call returns version information. It will allow future compatibility if clients
check for the correct version numbers. In addition, it provides hints on how to
decode the values served by this server.

{ i n t 32 ver ,
s t r i n g desc ,
s t r i n g how [] ,
s t r i n g s t a t [] ,
{ i n t 32 num,

s t r i n g sevr ,
bool has value ,
bool t x t s t a t

} sevr []
} = a rch i ve r . i n f o ()

ver: Version number. The first released software uses ’1’.

http://www.xmlrpc.com

CHAPTER 4. DATA RETRIEVAL 39

desc: Cute description that one can print.

how: Array of strings with a description of the request methods supported for
’how’ in the archiver.values() call described further below in section 4.4.4.

stat: Array of strings with a description of the “status” part of the values re-
turned by the archiver.values() call.

sevr: Array of structures with a description of the “severity” part of the values
returned by the archiver.values() call.

The result is a structure with a numeric “ver” member, a string “desc” member
and so on as listed above. Implementations like perl will return a hash with
members “ver”, “desc”, etc. The strings in “how” describe the request method
for how=0, how=1, and so on. The strings in “stat” describe the enumerated
status values, the typical result is shown in table 4.1.

The more important information is in the “sevr” array. It also lists severity
numbers (“num”) and their associated string representation (“sevr”). In addition
to the alarm severities defined by the EPICS base software, the archiver uses
some special severity values which have the “has value” property set to false.
They identify situations that have no value because the channel was discon-
nected or the archiver was turned off. Other special severities identify repeat
counts which are used in the periodic scanning modes of the archive engine: If
the channel did not change for N sample times, a repeat count of N is logged
instead of logging the same value N times. In that case, the “txt stat” property
is set to false because the status (stat) field no longer corresponds to a status
string from table 4.1. Instead, it provides the repeat count N. Table 4.2 lists
the typical content of the “sevr” array, table 4.3 presents examples for decoding
values based on their status and severity information.

Array Element String
0 NO ALARM
1 READ ALARM
2 WRITE ALARM
3 HIHI ALARM
4 HIGH ALARM
5 LOLO ALARM
6 LOW ALARM
7 STATE ALARM
.
17 UDF ALARM
.

Table 4.1: Alarm Status Values returned in the “stat” member of archiver.info()

CHAPTER 4. DATA RETRIEVAL 40

num sevr has value txt stat
0 NO ALARM true true
1 MINOR true true
2 MAJOR true true
3 INVALID true true
3968 Est Repeat true false
3856 Repeat true false
3904 Disconnected false true
3872 Archive Off false true
3848 Archive Disabled false true

Table 4.2: Alarm Severity Values returned in the “sevr” member of
archiver.info()

Severity (sevr) Status (stat) Value Example Text
0 0 3.14 “3.14”
1 6 3.14 “3.14 MINOR LOW”
3856 6 3.14 “3.14 Repeat 6”
3904 0 0 “Disconnected”

Table 4.3: Examples for decoding samples returned from the archiver.values()
call based on their Status and Severity

4.4.2 archiver.archives

Returns the archives that this data server can access.

{ i n t 32 key ,
s t r i n g name,
s t r i n g path } [] = a r ch i ve r . a rch ives ()

key: A numeric key that is used by the following routines to select the archive.

name: A description of the archive that one could e.g. use in a drop-down
selector in a GUI application for allowing the user to select an archive.

path: The path to the index file, valid on the file system where the data server
runs. It might be meaningful to a few users who want to know exactly
where the data resides, but it is seldom essential for XML-RPC clients to
look at this.

The result is an array of structures with a numeric “key” member and strings
“name” and “path”. An example result could be:

{ key =1 , name= ”Vacuum” , path= ” / home / data / vac / index ” } ,
{ key =2 , name= ”RF” , path= ” / home / data /RF/ index ” }

CHAPTER 4. DATA RETRIEVAL 41

So in the following one would then use key=1 to access vacuum data etc. One
can expect the keys to be small, positive numbers, but they are not guaranteed
to be consecutive as 1, 2, 3, ... Since the keys could be something like 10, 20,
30 or 1, 17, 42, they are not useful as array indices.

4.4.3 archiver.names

Returns channel names and start/end times. The key must be a valid key
obtained from archiver.keys. Pattern is a regular expression; if left empty, all
names are returned.
NOTE: The Time Stamps are not the raw EPICS time stamps with 1990 epoch,
but use the time t data type based on a 1970 epoch.

{ s t r i n g name,
i n t 32 s t a r t s e c , i n t 32 s ta r t nano ,
i n t 32 end sec , i n t 32 end nano } []

= a r ch i ve r . names (i n t 32 key , s t r i n g pa t t e rn)

The result is an array of structures, one structure per channel that matches
the pattern. Start/end gives an idea of the time range that can be found in
the archive for that channel. The archive might actually contain entries after
the reported end time because the index might not be up too date on the end
times.

4.4.4 archiver.values

This call returns values from the archive identified by the key for a given list of
channel names and a common time range.

r e s u l t = a r ch i ve r . values (
i n t key ,
s t r i n g name [] ,
i n t 32 s t a r t s e c , i n t 32 s ta r t nano ,
i n t 32 end sec , i n t 32 end nano , i n t 32 count ,
i n t 32 how)

The parameter ”how” determines how the raw values of the various channels
get arranged to meet the requested time range and count. For details on the
methods mentioned in here refer to section 2.7 and following, beginning on
page 10.

how = 0 (raw): Get raw data from archive (see 2.7.1), starting w/ ’start’, up to
either ’end’ time or max. ’count’ samples.

how = 1 (spreadsheet): Get data that is filled or staircase-interpolated, start-
ing w/ ’start’, up to either ’end’ time or max. ’count’ samples (see 2.7.3).
For each channel, the same number of values is returned. The time

CHAPTER 4. DATA RETRIEVAL 42

stamps of the samples match accross channels, so that one can print the
samples for each channel as columns in a spreadsheet. If a spreadsheet
cell is empty because the channel does not have any useful value for that
point in time, a status/severity of UDF/INVALID is returned (Tables 4.2
and 4.1).

how = 2 (averaged): Get averaged data from the archive, starting w/ ’start’,
up to either ’end’ time or max. ’count’ samples (see 2.7.4). The data is
averaged within bins whose size is determined by of (end-start)/count,
so you should expect to get close to ’count’ values which cover ’start’ to
’end’. Again refer to section 2.7.

how = 3 (plot binning): Uses the plot-binning method based on ’count’ bins
(see 2.7.5).

how = 4 (linear): Get linearly interpolated data from the archive, starting w/
’start’, up to either ’end’ time or max. ’count’ samples (see 2.7.4). The
data is interpolated onto time slots which are multiples of (end-start)/count,
so you should expect to get close to ’count’ values which cover ’start’ to
’end’. Again refer to section 2.7.

The result is an array of structures, one structure per requested channel:

r e s u l t : = { s t r i n g name , meta , i n t 32 type ,
i n t 32 count , values } []

name: The channel name. Result[i].name should match name[i] of the re-
quest, so this is a waste of electrons, but it’s sure convenient to have
the name in the result, and we’re talking XML-RPC, so forget about the
electrons.

meta: The meta information for the channel. This is itself a structure with the
following entries:

meta : = { i n t 32 type ;
type ==0: s t r i n g s ta tes [] ,
type ==1: double d isp h igh ,

double d isp low ,
double alarm high ,
double alarm low ,
double warn high ,
double warn low ,
i n t prec , s t r i n g u n i t s

}

type: Describes the data type of this channel’s values:

CHAPTER 4. DATA RETRIEVAL 43

s t r i n g 0
enum 1 (XML in t32)
i n t 2
double 3

count: Describes the array size of this channel’s values, using 1 for scalar
values. Note that even scalar values are returned as an array with one
element!

values: This is an array where each entry is a structure of the following layout:

values : = { i n t 32 s ta t , i n t 32 sevr ,
i n t 32 secs , i n t 32 nano ,
<type > value [] } []

The values for status and severity match in part those that the EPICS IOC
databases use. The ArchiveEngine simply receives and stores them, they are
passed on to the retrieval tools without change. In addition, the archiver toolset
uses special severity values to indicate a disconnected channel or the fact that
the ArchiveEngine was shut down. For details refer to section 4.4.1 and the
tables 4.1, 4.2 and 4.3.

4.4.5 Note about Tiny Numbers and Precision

Some systems deal with small numers. Vacuum readings often use numbers
like 5 × 10−8. The XML-RPC specification is unfortunately unclear as to how
numbers should get serialized and parsed other than specifically prohibiting the
exponential notation. The best one could serialize the example number would
therefore be “0.00000005”.

When the ArchiveDataServer is build with the XML-RPC library for C/C++
as described in the installation section, 7, it will attempt to properly serialize
small numbers. When using another XML-RPC library, and this includes the
XML-RPC library that your client program uses, small numbers might end up
being serialized as zero. The Java Archive Client appears to handle small
numbers, as does the “Frontier” XML-RPC library for perl.

A similar issue applies to the precision of floating point numbers: The Ar-
chiveDataServer serializes numbers with a fixed precision that is determined
by the XML-RPC library for C/C++. You can patch the library to increase the
precision.

4.5 Perl Client

The ArchiveDataClient.pl perl script is provided as a starting point for users
who want to write perl scripts that access the ArchiveDataServer via XML-
RPC. It requires the installation of the “Frontier” XML-RPC library for Perl. The

CHAPTER 4. DATA RETRIEVAL 44

ArchiveDataClient script might also help you test your ArchiveDataServer setup
because it offers a command-line interface that is very close to the underlying
XML-RPC calls. What follows is an example session:

USAGE: Arch iveDataCl ien t . p l [op t ions] { channel names }
Options :
−u URL : Set the URL of the DataServer
− i : Show server i n f o
−a : L i s t a rch ives (name , key , path)
−k key : Spec i fy arch ive key .
− l : L i s t channels
−m pa t te rn : . . . t h a t match a pat ten
−h how : ’how ’ number ; r e t r i e v a l method
−s t ime : S t a r t t ime MM/DD/YYYY HH:MM:SS.NNNNNNNNN
−e t ime : End t ime MM/DD/YYYY HH:MM:SS.NNNNNNNNN
−c count : Count

$ URL= h t t p : / / l o c a l h o s t / cgi−bin / xmlrpc / ArchiveDataServer . cg i
$ Arch iveDataCl ien t . p l −u $URL − i
Archive Data Server V 0
Desc r i p t i on :
Channel Arch ive r Data Server V0
Conf ig ’ / var /www/ cgi−bin / xmlrpc / se rve rcon f i g . xml ’
Supports how=0 (raw) , 1 (spreadsheet) ,

2 (i n t e r p o l / average) , 3 (p lo t−b inn ing)
$ Arch iveDataCl ien t . p l −u $URL −a
Archives :
Key 1 : ’ Xmtr 2002 ’ i n ’ / home / / 2 0 0 2 / index ’
Key 2 : ’ Xmtr 2003 ’ i n ’ / home / / 2 0 0 3 / index ’
$ Arch iveDataCl ien t . p l −u $URL −k 1 −m IOC1 : Load
Channels :
Channel Test HPRF : IOC1 : Load ,

11/01/2002 17:09:37.616190999
− 12/31/2002 23:59:45.579346999

$ Arch iveDataCl ien t . p l −u $URL −k 1 \
−s ” 12/01/2002 ” −e ” 12/31/2002 ” \
−h 2 −c 3 1 Test HPRF : IOC1 : Load

Resul t f o r channel ’ Test HPRF : IOC1 : Load ’ :
D isp lay : 0 . 0 0 0 0 0 0 . . . 1 0 0 . 0 0 0 0 0 0
Alarms : 0 . 0 0 0 0 0 0 . . . 8 0 . 0 0 0 0 0 0
Warnings : 0 . 0 0 0 0 0 0 . . . 5 0 . 0 0 0 0 0 0
Uni ts : ’%’ , P rec i s ion : 0
Type : 3 , element count 1 .
11/30/2002 23:11:36.774193571 11.820585
12/01/2002 22:25:09.677419377 11.846808
12/02/2002 21:38:42.580645183 12.310933

CHAPTER 4. DATA RETRIEVAL 45

12/03/2002 20:52:15.483870989 0.000000 ARCH DISCONNECT
12/04/2002 20:05:48.387096795 12.225621
. . .
12/29/2002 23:58:03.870967751 11.448704

4.6 “Storage” Library

The INDEXStorage library, a C++ library, provides access to local archives. It is
used by the ArchiveEngine to create archives, as well as by the ArchiveExport
and Data Server programs for retrieval. In principle, your custom C++ code can
use it as well. Read the header files, maybe run “doxygen” with the provided
“ChannelArchiver.doxy” configuration to obtain a more readable version.

However, you also need to be aware of its shortcomings: Written primarily
to support the archiver tools, its API might change more frequently than the
network data server protocol. In addition, it is of course limited to accessing
local data files, it cannot query the network data server.

4.7 StripTool

StripTool is primarily a Channel Access client for taking “live” samples from CA
servers and plotting them over time. For information on the current version, re-
fer to the section on Host Software: Clients under http://www.aps.anl.gov/epics.
A “History” module allows StripTool to access data from a Channel Archiver
network data server.
NOTE: This history module is incomplete. At the time, the StripTool API did not
provide means for a history data plug-in to create a configuration GUI. There
was also no support for asynchronous data retrieval, meaning StripTool freezes
while archive data is requested. Use of the history module is discouraged
except for testing.

Fig. 4.3 shows an example of Striptool after running for about 20 minutes. It
displays those 20 minutes of live data as well as data retrieved from an archive
data server, both types of data clearly separated by a gap of about 20 minutes
where the archive was no longer and StripTool not yet running. There will
always be a small gap as a result of the ArchiveEngine’s buffering between
writes to the archive.

For configuration details, refer to the file README XMLRPC which is part
of the XML-RPC history module for StripTool.

4.8 Matlab

Programs like Matlab or Octave are ideally suited for the more sophisticated
analysis of archived data. The ChannelArchiver includes interface code for

http://www.aps.anl.gov/epics

CHAPTER 4. DATA RETRIEVAL 46

Figure 4.3: StripTool accessing live and archived data.

Matlab and Octave, allowing those two programs to access data from the
ChannelArchiver’s Network Data Server. Refer to the file ChannelArchiver/-
Matlab/README for details on building, installing and using those extensions.
NOTE: The Matlab/Octave support is experimental. Its use is discouraged
except for testing.

Figures 4.4, 4.5, 4.6, 4.7 and 4.8 showcase some examples and provide
you with an excuse to print at least this section of the manual on a color printer.

CHAPTER 4. DATA RETRIEVAL 47

Figure 4.4: Matlab Example: Input and Output power of a Klystron for a two-day
test run, combined with a scatter plot of the computed Klystron Gain.

CHAPTER 4. DATA RETRIEVAL 48

Figure 4.5: Matlab Example: One-month overview of Klystron oil tank tempera-
tures. The Plot-Binning request method as described in section 2.7.5 was used
to reduce the amount of data. Interesting features like the noise on the DTL5
signal as well as occasional spikes (which probably result from maintenance
work on the oil tank) are preserved.

CHAPTER 4. DATA RETRIEVAL 49

Figure 4.6: Matlab Example: One-month overview of Klystron oil tank temper-
atures. The raw data was reduced by averaging into 1000 bins as described
in section 2.7.4, allowing for easier post-processing, and temperatures were
converted to Celsius. Comparison with fig. 4.5 shows how many details can be
lost via averaging, so it must be applied with caution.

CHAPTER 4. DATA RETRIEVAL 50

Figure 4.7: Matlab Example: The same data as in 4.6 displayed as a “Waterfall”
plot. This type of display hides almost all the detail of the individual channels.
Outliers, however, stand out like the possible sensor problem on DTL4, which
is why this display method is well suited for an initial investigation of many
channels. The example also shows gaps in the data caused by the many times
when the archive engine was stopped during the ongoing tests of the new
archive engine.

CHAPTER 4. DATA RETRIEVAL 51

Figure 4.8: Matlab Example: Again the same data as in 4.6 displayed as a
surface plot. Tools like Matlab allow the user to rotate this plot in real-time,
which might be useful for the inspection of certain channels.

Chapter 5

Indices

The archiver supports two types of indices:

• “binary”:
This is the type of index that the engine creates for its data files. The
ArchiveIndexTool, described in 5.1, allows the creation of new indices
which combine data from existing indices.

A binary index contains information about all the data block for each chan-
nel. It offers the best retrieval performance. On the downside, the cre-
ation of a binary index can take time, and the size of an index file is
limited to 2 GB. When the sub-archives which are accessed via the index
change, the index needs to be updated or rebuild.

• “list”:
This type of index simply lists the sub-archives which one would like
to access. Its format is the same as the indexconfig.xml used by the
ArchiveIndexTool to create a binary index. When retrieving data, the first
sub-archive in the list is used. When the channel is not found, the next
sub-archive is used and so on.

A list index takes virtually no time to create, and also requires little disk
space. The retrieval is not too bad when only a few sub-archives are
listed. It works very well for maybe a dozen entries, but of course de-
grades with the number of entries.

It will also fail when the sub-archives contain the same channels but for
different time ranges.

One should try to use binary indices as long as the size and update times are
acceptable. Not available but clearly needed is a third index type which con-
tains the channel names and time ranges of the sub-archives, without growing
to the full binary index size which references each data block.

52

CHAPTER 5. INDICES 53

5.1 Index Tool

The ArchiveIndexTool is used to create Master Indices by combining multiple
indices into a new one. When invoked without valid arguments, it will display a
command description similar to this:

USAGE: Arch iveIndexTool [Options] < arch ive l i s t f i l e > \
<output index>

Options :
−help Show Help
−M <3−100> RTree M value
−verbose < l e ve l > Show more i n f o

The archive list file lists all the sub archives, that is the paths to each sub-
archive’s index file. It needs to be an XML file conforming to the DTD in listing
5.1 (see section 7.2.1 on DTD file installation). Listing 5.2 provides an example.

<?xml vers ion= ” 1.0 ” encoding= ”UTF−8”?>
<!−− DTD f o r the ArchiveIndexTool Con f i gu ra t i on −−>
<!−− L i s t s a l l the ind i ces o f arch ives t h a t −−>
<!−− should be combined i n t o the master index . −−>
<!ELEMENT indexcon f ig (a rch ive ∗)>
<!ELEMENT arch ive (index)>
<!ELEMENT index (#PCDATA)><!−− path −−>

Listing 5.1: XML DTD for the Archive Index Tool Configuration

<?xml vers ion= ” 1.0 ” encoding= ”UTF−8” standalone= ” no ”?>
<!DOCTYPE indexcon f ig SYSTEM ” indexcon f ig . dtd ”>
<i ndexconf ig>

<archive>
<index >/home / kasemir / xmtrdata /2002/ index </ index>

</ arch ive>
<archive>

<index >/home / kasemir / xmtrdata /2003/ index </ index>
</ arch ive>

</ indexconf ig>

Listing 5.2: Example Archive Index Tool Configuration

We refer to chapter 6 for an example of how to use the ArchiveIndexTool in
collaboration with the other Channel Archiver tools.

CHAPTER 5. INDICES 54

5.1.1 make indexconfig.pl

As an aid to creating configuration files for the ArchiveIndexTool, you can use
the perl script “make indexconfig.pl” that converts a list of index files into the
appropriately formatted XML:

USAGE: make indexconf ig [−d DTD] index { index }

This t o o l generates a c o n f i g u r a t i o n f o r the
ArchiveIndexTool based on a DTD and a l i s t
o f index f i l e s provided v ia the command l i n e .

5.1.2 Internals

The Index Tool allows creation of a master index that covers more than one
sub archive. For example, we can create configuration files for the index tool to
combine several vacuum sub-archives into one, then do the same for cooling
data:

cd / data / vacuum
make indexconf ig . p l 2004/02 19 / index 2004/02 20 / index \

> i ndexcon f ig . xml
cd / data / coo l i ng
make indexconf ig . p l 2004/02 19 / index 2004/02 20 / index \

> i ndexcon f ig . xml

After running ArchiveIndexTool in /data/vacuum and /data/cooling, we will have
two new indices. One refers to all the vacuum data, the other to all the cooling
data:

/ data / vacuum / index
/ data / coo l i ng / index

Note that these are only index files. There are no new data files because
the new “master” index files will point to data blocks in the existing data files,
e.g. the one under /data/vacuum/2004/02 19. It is also important to remem-
ber that the master index files include the paths to the data files as instructed
in the indexconfig.xml files. According to the previous example, /data/vacu-
um/index was created from /data/vacuum/indexconfig.xml which included the
relative path “2004/02 19/index”. The vacuum master index will therefore point
to data files with a relative path like “2004/02 19/20040219”. Whenever we
use “/data/vacuum/index”, the retrieval tools will prepend the path to the in-
dex, “/data/vacuum”, to the relative data file path found in the index, for exam-
ple “2004/02 19/20040219”, and thus find the data under its full path of e.g.
“/data/vacuum/2004/02 19/20040219”. We cannot move “/data/vacuum/index”
to another location like “/tmp/index”. The retrieval tools would then try to access
“/tmp/2004/02 19/20040219” and fail.

CHAPTER 5. INDICES 55

Having said that, it is possible to generate master indices that use the full,
absolute paths to their data files by simply listing the full paths to the sub-
archives in indexconfig.xml. This is, however, not recommended because it
will increase the size of the index files simply because the full path names
are longer than the relative paths. For the same reason it is advisable to
use short path names: When an index file points to many data blocks in
many data files, it makes quite some difference if you used a short-named
directory tree with paths like “/data/vac/...” as opposed to “/user/data/channel-
archiver/data/subsystems/vacuum-system/...”.

As a second step, we can further combine the master indices for vacuum
and cooling data into one index that covers all out data. By creating “/data/in-
dexconfig.xml” in which we list “vacuum/index” and “cooling/index”, and running
the ArchiveIndexTool in “/data”, we create “/data/index” which points to all our
data. Alternatively, we could have skipped the intermediate indices for vacuum
and cooling and created “/data/indexconfig.xml” from the beginning like this:

cd data
make indexconf ig . p l ∗ /2004 /∗ / index \

> i ndexcon f ig . xml
ArchiveIndexTool −v1 indexcon f ig index

In any case we end up with “/data/index” as an index for all our vacuum and
cooling data.

Chapter 6

Example Setup

The following describes how the archiver toolset is used at the Spallation Neu-
tron Source (SNS). One can of course configure individual engines, start and
stop them manually, and do the same with index tools and network data servers.
You should in fact initially do exactly that in order to become familiar with the
pieces of the toolset. Ultimately, however, we try to base as much as pos-
sible on a central configuration, and automate the rest via the scripts in the
ChannelArchiver/ExampleSetup directory. We distinguish between two types
of computers:

• Sampling Machine:
A computer that runs ArchiveEngine instances.

• Serving Machine:
A computer that uses the ArchiveIndexTool to create additional binary
indices and runs the ArchiveDataServer.

There might be more than one ’sampling’ computer as well as more than one
’serving’ computer. A single machine might perform both functions, but in gen-
eral they are different, networked computers, and consequently tools are re-
quired to make the data collected on the “sampling” computer available on the
“server”. One could use NFS, but we prefer secure copy (scp) in order to de-
couple the computers as best as possible.

We want to be able to move an engine from one computer to another, and
still keep an overview. Therefore a file “/arch/archiveconfig.xml” describes the
complete archive setup: Which engines run where, and how the data gets
served. On some computers, for example ics-srv-archive1, further subdirec-
tories of “/arch” are used to run engines. On another computer, for example
ics-srv-web2, subdirectories contain data copied from archive1 so that the data
server can serve it.

56

CHAPTER 6. EXAMPLE SETUP 57

6.1 Setup, archiveconfig.xml

Each computer needs to have the same copy of “/arch/archiveconfig.xml”, and
the scripts from the “ExampleSetup” directory of the archiver sources need to
be copied into “/arch/scripts”. You might generate and distribute “archivecon-
fig.xml” manually or use a relational database. People who have used previ-
ous releases of the archive toolset might remember the “archiveconfig.csv” file.
There is a tool “scripts/convert archiveconfig to xml.pl” to convert that file into
an “archiveconfig.xml” skeleton.

<?xml vers ion= ” 1.0 ” encoding= ”UTF−8” standalone= ” no ”?>
<!DOCTYPE arch i vecon f i g SYSTEM ” a rch i vecon f i g . dtd ”>
<arch ivecon f ig >

<root >/arch </ root>

<servercon f ig >/ var /www/ se rve rcon f i g . xml</ se rve rcon f ig >

<mailbox >/ arch / x fe r </mailbox>

<daemon d i r e c t o r y = ’RF ’>
<run>archive1 </ run>
<desc>RF</desc>
<por t >4900</ por t>
<dataserver>

<index type= ’ b inary ’ key= ’ 10 ’>RF</ index>
<host>web2</ host>

</ dataserver>
<engine d i r e c t o r y = ’ l l r f ’>

<run>archive1 </ run>
<desc>LLRF</desc>
<por t >4901</ por t>
< r e s t a r t type= ’ weekly ’>We 10:20 < / r e s t a r t >
<dataserver>

<cu r ren t i ndex key= ’ 4901 ’> l l r f </ cu r ren t index >
<index type= ’ b ina ry ’>LLRF data </ index>
<host>web2</ host>

</ dataserver>
</engine>

</daemon>
</ a rch ivecon f ig >

Listing 6.1: archiveconfig.xml

CHAPTER 6. EXAMPLE SETUP 58

The “archiveconfig.xml” file describes the complete archive layout, using the
following elements:

• root tag: Names the root directory, typically “/arch”. This has to be
the same directory name on all computers, since they all use the same
“archiveconfig.xml”.

• serverconfig tag: Location of the server configuration to be created. See
section update server.pl, 6.4.3.

• mailbox tag: Used to communicate from the “sampling” to the “serving”
machines.

• daemon tag: Configures an archive daemon and its engines, described
in 6.2, as well as how that data should be indexed and served, see 6.4.

6.2 Sampling Computer

Figure 6.1: Tools used on a sampling computer, refer to text.

Instead of running just one archive engine, it is often desirable to run sev-
eral. This way, there can be separate engines for each subsystem, possibly

CHAPTER 6. EXAMPLE SETUP 59

maintained by different people. In addition, periodic restarts, for example once
a week, create a separate sub-archive with each restart, thereby limiting the
possibility for data loss in case an engine crashes or creates corrupt archives.

For each subsystem, an “ArchiveDaemon” program manages one or more
engines, monitors their condition, and performs the periodic restarts. For ex-
ample, we might run one ‘daemon’ for the Integrated Control System (ICS)
and one for the channels related to Radio Frequency (RF). The ICS daemon
should maintain one ArchiveEngine for the timing system (tim) and one for the
machine protection system (mps), while the RF daemon has one engine for the
low-level and one for the high power RF (llrf, hprf).

This separation is somewhat arbitrary. We could have made “llrf” and “hprf”
channel groups under one and the same engine. In fact all the above could
reside within one engine, and the result would probably be less CPU load com-
pared to the setup with multiple engines. It is, however, advisable to spread the
channels over different daemons and engines whenever different people deal
with the IOCs that host the channels, so that the engineers can independently
configure their archiving. In addition, you want to keep the amount of data col-
lected by each engine within certain bounds, for example: not more than one
CD ROM per month, one DVD per year, or whatever you plan to do for data
maintenance. You can of course also follow the approach that most sites use
in reality: Wait until all disks are full, then panic. In which case, another reason
is data safety: You can reduce the damage caused by crashes of one engine
to a certain number of channels and the data for the restart period, for example
one week.

6.2.1 Configuration

The configuration of the sampling computer is primarily done in the <daemon>
sections of archiveconfig.xml, described in section 6.2.3.

6.2.2 update archive tree.pl

Initially and after every change to the configuration, the update archive tree
script is used to create the necessary infrastructure. This script reads archive-
config.xml and create all the subdirectories, daemon config files, and skeleton
engine configurations which are meant to run on the local computer. Run it with
“-h” to see available options.
NOTE: In order to determine what daemons should run on the local host, the
host name in the “run tags” is used as a regular expression for the host name.
So when specifying that a certain daemon should run on “archive1”:

<daemon . . .
<run>archive1 </ run>
. . .

CHAPTER 6. EXAMPLE SETUP 60

... that daemon will run on computers called “ics-srv-archive1” as well as
“archive1.sns.ornl.gov” etc. The same applies to the host tags which specify
where a data server should run.

It is important to note that the host names are used as simple regular ex-
pressions, and not in the sense of a name lookup. So “localhost” would not
work as expected! Instead of matching any host, it will probably match none of
your hosts.

For the example from listing 6.1, we would get these subdirectories:

RF
RF/ l l r f
RF/ l l r f / ASCIIConfig

Each directory contains configuration files and scripts explained in the follow-
ing. Each engine directory also contains an “ASCIIConfig” subdirectory with a
script “convert example.sh” that you might use to create the XML configuration
file for the ArchiveEngine from ASCII configuration files, though the engineer
responsible for the subsystem is free to use any method of his/her choice as
long as the result is a configuration file for the engine that follows the naming
convention

Daemon-Directory / Engine-Dir. / Engine-Dir.-group.xml,

If you want to use the ASCIIConfig directory, check section 10.4 for the format
of the ASCII configuration files.

6.2.3 ArchiveDaemon

The ArchiveDaemon is a script that automatically starts, monitors and restarts
ArchiveEngines on the local host. It is based on ideas by Thomas Birke, who
implemented a similar CAManager tool while at LANL. The daemon includes a
built-in web server, so by listing several ArchiveEngines that are meant to run
on a host in the ArchiveDaemon’s configuration file, one can check the status
of all these engines on a single web page as shown in Fig. 6.2.

The daemon will attempt to start any ArchiveEngine that it does not find run-
ning. In addition, the daemon can periodically stop and restart ArchiveEngines
in order to create e.g. daily sub-archives. Furthermore, it adds information
about each completed sub-archive to a mailbox directory, allowing the index-
ing mechanism to create the necessary indices and update the data server
configuration.

Before using the ArchiveDaemon, one should be familiar with the configu-
ration of a single ArchiveEngine (sec. 3), and how to start and stop it manually.

Configuration

You will typically not directly configure an archive daemon, but instead spec-
ify its configuration in the “archiveconfig.xml” file. The “update archive tree.pl”

CHAPTER 6. EXAMPLE SETUP 61

Figure 6.2: Archive Daemon, refer to text.

script will then generate those daemon configurations needed for the local com-
puter, and ignore those meant to run on other machines.

CHAPTER 6. EXAMPLE SETUP 62

<?xml vers ion= ” 1.0 ” encoding= ”UTF−8” standalone= ” no ”?>
<!DOCTYPE daemon SYSTEM ” ArchiveDaemon . dtd ”>
<daemon>

<por t >4900</ por t>
<mailbox >/ arch / x fe r </mailbox>
<engine d i r e c t o r y = ’ l l r f ’>

<desc>LLRF</desc>
<por t >4901</ por t>
<conf ig> l l r f −group . xml</ conf ig>
< r e s t a r t type= ’ weekly ’>We 10:20 < / r e s t a r t >
<dataserver><host>web2</ host ></dataserver>

</engine>
<!−− Typ i ca l l y , more e n t r i e s f o l l o w :
<engine d i r e c t o r y = ’ hp r f ’>

. . .
</engine>
−−>

</daemon>

Listing 6.2: Example Archive Daemon configuration for listing 6.1.

CHAPTER 6. EXAMPLE SETUP 63

In principle, you can also use the archive daemon by manually creating its
configuration, just like you can manually start and stop engines without using
the daemon. But in here we assume that you start with a configuration as
shown in listing 6.1, which calls for an “RF” daemon to maintain a “llrf” engine
on the host “archive1”. So on “archive1”, a subdirectory “/arch/RF” will be cre-
ated with the daemon configuration shown in listing 6.2, which complies with
the DTD from listing 6.3.

The following is an explanation of the daemon-related tags in the “archive-
config.xml” file. Compare with the created daemon configuration to see how
they get extracted from the global configuration file.

• run tag:
Both the daemon and each engine have this element, which specifies the
host name where a daemon and engines should run. The names are reg-
ular expressions. In principle, one could think about a setup where RF/llrf
runs on “archive1” and RF/hprf runs on “archive2”, and consequently both
machines run an “RF” daemon:

<daemon d i r e c t o r y = ’RF ’>
<run>arch ive [12] < / run>
. . .

<engine d i r e c t o r y = ’ l l r f ’>
<run>archive1 </ run>
. . .

<engine d i r e c t o r y = ’ hp r f ’>
<run>archive2 </ run>

This has not been tested. Typically, a daemon and its engines are all on
the same computer.

The generated daemon config file only includes the configuration needed
for the local computer. So instead of duplicating <run>localhost</run>,
it is omitted in the daemon config file.

• desc tag:
A short description.

• port tag:
Both the daemon and each engine have this mandatory element, which
determines the port number of the HTTP server. Section 6.2.3 describes
the HTTP server of the daemon, while section 3.3.4 explains the engine
HTTPD.

NOTE: The port numbers used by the Archive Daemons and all the
Archive Engines need to be different. You cannot use the same port
number more than once per computer.

• mailbox tag:
Directory that the daemon uses to communicate with the data server.

CHAPTER 6. EXAMPLE SETUP 64

• engine tag:
Specifies the sub-directory for each engine under a daemon.

• config tag:
This element of each engine entry contains the path to the configuration
file of the respective ArchiveEngine, see section 3.1. The update archive -
tree.pl script creates this entry based on the engine directory from archive-
config.xml as “engine--group.xml”. You can only influence it if you choose
to not use archiveconfig.xml and instead create the daemon configura-
tions manually.

• restart tag:
When provided, it specifies when the daemon should re-start an engine.

– daily tag:
The element must contain a time in the format “HH:MM” with 24-hour
HH and minutes MM. One example would be “02:00” for a restart at
2 am each morning.

– weekly tag:
Weekly is similar to daily, but using an element that contains the
day of the week (Mo, Tu, We, Th, Fr, Sa, Su) in addition to the time
on that day in 24-hour format, e.g. “We 08:00”. In this example,
the daemon will attempt a restart every Wednesday, 8’o clock in the
morning.

– timed tag:
In this case, the element needs to contain a start/duration time pair
in the format “HH:MM/HH:MM”. The first, pre-slash 24-hour time
stamp indicates the start time, and the second 24-hour time, trail-
ing the slash, specifies the runtime. The engine will be launched
at the requested start time and run for the duration of the runtime.
As an example, “08:00/01:00” requests that the daemon starts the
engine at 08:00 and stops it after one hour, probably around 09:00,
each day.

– hourly tag:
The element must contain a number specifying hours: A value of
2.0 will cause a restart every 2 hours. The hourly restart is quite
inefficient and primarily meant for testing.

NOTE: It is advisable to stagger the restart times of your engines such
that they don’t all restart at the same day and time in order to reduce
the CPU and network load for the ChannelAccess re-connects. See also
show restarts.pl in section 6.2.4.

• dataserver tag:
Specifies the name of the data server host.

CHAPTER 6. EXAMPLE SETUP 65

<?xml vers ion= ” 1.0 ” encoding= ”UTF−8”?>
<!−− DTD f o r the ArchiveDaemon Con f igu ra t i on −−>
<!ELEMENT daemon (por t , mai lbox ? , engine∗)>

<!ELEMENT por t (#PCDATA) > <!−− TCP por t number −−>
<!ELEMENT mailbox (#PCDATA)> <!−− / path −−>

<!ELEMENT engine
(desc , por t , conf ig , r e s t a r t ? , dataserver ?)>

<!ATTLIST engine d i r e c t o r y CDATA #REQUIRED>

<!ELEMENT desc (#PCDATA)> <!−− Text −−>
<!ELEMENT con f i g (#PCDATA)> <!−− path −−>

<!ELEMENT r e s t a r t (#PCDATA)> <!−− path −−>
<!ATTLIST r e s t a r t

type (weekly | d a i l y | hour l y | t imed) #REQUIRED>
<!−− weekly Mo |Tu | . . . | Su HH:MM

d a i l y HH:MM
hour ly (double) hours
t imed HH:MM/HH:MM

(s t a r t / du ra t i on)
−−>

<!ELEMENT dataserver (host?)>
<!ELEMENT host (#PCDATA)>

Listing 6.3: XML DTD for the Archive Daemon Configuration

Starting, running, stopping daemons and engines

The following scripts, some created by “update archive tree.pl” in each daemon
and engine subdirectory, are used to control the daemons and engines:

• scripts/start daemons.pl
Starts all daemons meant to run on the local computer.

• scripts/stop daemons.pl
Stops all daemons. See “-h” for available options, which includes “-p” to
also stop all engines.

• daemon-dir/run-daemon.sh
Starts the daemon for this subsystem. The daemon will then start all
engines which are not already found running.

• daemon-dir/stop-daemon.sh
Stops the daemon for this subsystem.

CHAPTER 6. EXAMPLE SETUP 66

NOTE: This does not stop the engines, only the daemon.

• daemon-dir/view-daemon.sh
Script to run ’lynx’, the text-based web browser, with the URL of the dae-
mon HTTPD.

• daemon-dir/engine-dir/stop engine.sh
Stop the engine.

NOTE: There is no script to start an individual engine, because the dae-
mon will eventually start any engine that’s not running. So stopping an
engine is just another means of triggering a restart.

Each engine subdirectory contains

• archive active.lck
Lock file of the ArchiveEngine, exists while an engine is running.

• YYYY/MM DD/index
A subdirectory for index and data files of the sub-archive. If the ArchiveDae-
mon is configured to perform daily restarts, the format uses the year,
month and day to build the path name.

• current index
A soft-link to the currently used index.

In addition, there are log files like ArchiveDaemon.log and ArchiveEngine.log
created in the daemon and engine directories which log the diagnostics output
of the respective programs.

Daemon Web Server

You can use any web browser to view the daemon’s web pages, which look
similar to Fig. 6.2. The URL follows the format

h t t p : / / host : po r t

where “host” is the name of the computer where the ArchiveDaemon is running,
and “Port” is the TCP port that was specified in the config file.
NOTE: Instead of using Mozilla, Firefox, or any of the other full-blown graphical
web browsers, it is often more practical to use “lynx”. This text-mode web
browser shows the same information, but starts up quicker and uses less CPU
and memory resources, which can then be used by archive engines and the
operating system’s disk cache.

The main daemon web page lists all the archive engines that this daemon
controls with their status. The first column also contains links to the individual
archive engines. The status shows any of the following:

CHAPTER 6. EXAMPLE SETUP 67

• “N/M channels connected”
This means the ArchiveEngine is running and responding, telling us that
N out of a total of M channels have connected. If not all channels could
connect, you might want to follow the link to the individual engine and
further down to its channel groups and channels, and determine what
channels are missing and why: Is an IOC down on purpose? Is an IOC
disconnected because of network problems? Does a channel simply not
exist, i.e. the engine’s configuration is wrong?

• “Not Running”
This means that the respective ArchiveEngine did not respond when we
queried it, and there is no “archive active.lck” lock file. This combination
usually means that the engine is really not running (except for the Note
below about startup).

The first step in debugging would be to check the engine’s directory for
a log file. Does it indicate why the engine could not start? Then check
the daemon’s log file. It should list the exact command used to start the
engine. You can try that manually to check why it didn’t work.

• “Disabled.”
The web interface of the daemon contains a link for each engine that dis-
ables the engine. This places a file “DISABLED.txt” in the engine directory
and stops the engine. As you might have guessed, the daemon will not
attempt to start engines as long as the “DISABLED” file is found. This
is a convenient way to temporarily disable an engine without removing it
from the daemon’s configuration.

• “Unknown. Found lock file”
This means that the respective ArchiveEngine did not respond when we
queried it, but there is an “archive active.lck” lock file. This could have two
reasons. It could mean that the engine is running but it was temporarily
unable to respond to the daemon’s request. An example would be that
the engine is really busy writing and dealing with ChannelAccess, so that
its web server had to wait and the daemon timed out. All should be fine
again after some time.

If, on the other hand, the situation persists, it usually means that the
engine is hung or has crashed, so that it does not respond and the lock
file was left behind. See Crashes on page 99.

NOTE: The daemon queries the engines only every once in a while and leaves
them undisturbed most of the time. Especially after startup, all engines will
show up as “Not Running” in the daemon’s web page while in fact most of them
are already running. Then you will see many disconnected channels while the
engines did in fact already connect to all channels. If you are impatient, you can
click on the links to the individual engines to get a more up-to-date snapshot of
each engine’s status.

CHAPTER 6. EXAMPLE SETUP 68

Instead of using the scripts to stop and ArchiveDaemon, one can directly ac-
cess the “/stop” URL of the daemon’s HTTPD, e.g. “http://localhost:4610/stop”.
Similar to the ArchiveEngine’s HTTPD, this URL is not accessible by following
links on the HTTPD’s web pages. You will have to type the URL. This is meant
to prevent web robots or a monkey who is sitting in front of the computer and
clicking on every link from accidentally stopping the daemon, although it has
never been tested with an actual monkey.

Finally, the daemon will respond to the URL “/postal” by stopping every
ArchiveEngine controlled by the daemon, followed by stopping itself. “Postal”
is an abbreviation for “POstpone STopping the daemon until ALl engines quit”.
It is not at all related to “going postal”, and to our best knowledge no USPS
employees have been hurt during the development of this software.

6.2.4 Status Information

The following scripts use the HTTPD of the daemon and engine as well as
generic Unix tools to create status overviews. Some can be used in “cron” jobs
to periodically update web pages or send regular status emails.

• make archive infofile.pl
Creates summary of daemon and engine status, what is running and
what is missing, how many channels connected etc. See “-h” option for
details.

• make archive web.pl
Similar, but creating a web page. Fig. 6.3 shows one example.

• engine write durations.pl
Summary of engine performance: How many channels, average values
per seconds.

• show restarts.pl
Creates an overview of restart times, meant as an aid for selecting restart
times that either coincide or avoid other restarts based on your prefer-
ence.

• show engines.pl
Parses output of “ps” command for engine related information.

• show sizes.pl
Parses output of “du” for size of sub-archives.

6.3 Sub-Archives

Based on the example configuration used in this chapter, the daemon will

CHAPTER 6. EXAMPLE SETUP 69

Figure 6.3: Example of the archive status web page generated by the
make archive web.pl script.

1. Periodically verify if engines that are supposed to run are actually running.

2. Start missing engines by creating sub-archives named after the current
day, e.g. “RF/llrf/2006/03 22/index” when starting an engine in “RF/llrf”.

3. Stop the llrf engine each Wednesday at 10:20, generate a file in the mail-
box directory with information about the “old” sub-archive, the one gen-
erated by the engine that was just stopped, and then start a new sub-
archive.

4. Maintain a “current index” soft link to point to the current sub-archive.

As a result, we create weekly sub-archives for the LLRF like these on the sam-
pling computer “archive1”:

. . .
/ arch /RF/ l l r f /2006/03 08 / index
/ arch /RF/ l l r f /2006/03 15 / index
/ arch /RF/ l l r f /2006/03 22 / index
/ arch /RF/ l l r f / cu r r en t i ndex −> 2006/03 22 / index

There will of course be data files associated with these indices, but for retrieval
purposes we identify an archive solely by its index file: We can invoke e.g.
ArchiveExport with the path to any of the index files. Unfortunately, whichever
index we choose, we will only see data for one week of that one subsystem at
a time. The “serving” computer will therefore use additional index files.

CHAPTER 6. EXAMPLE SETUP 70

6.4 Serving Computer

Figure 6.4: Tools used on a serving computer, refer to text.

The serving computer might actually be the same as the sampling machine, or
it can be a different computer. In any case, all computers must have access to
the same archiveconfig.xml file and mailbox directory. The following describes
the scenario used at the SNS with different computers and no writable NFS
share between the affected machines. The idea is to copy the sub-archives
over to the serving computer, and create further indices. For the data example
from the previous section, we will get the following on the serving computer
“web2”:

. . .
/ arch /RF/ l l r f /2006/03 08 / index
/ arch /RF/ l l r f /2006/03 15 / index
/ arch /RF/ l l r f / master index
/ arch /RF/ l l r f / cu r r en t i ndex

−> / a rch ive1 / arch /RF/ l l r f / cu r ren t i ndex
/ arch /RF/ master index
/ arch / a l l . xml

CHAPTER 6. EXAMPLE SETUP 71

/ arch / cu r ren t . xml

All sub-archives which are closed, i.e. no longer updated by a running en-
gine, have been copied from the sampling computer, where they could now be
deleted. Depending on the configuration, additional indices are maintained for
all the copied data. In this example, one binary “master index” is generated for
the weekly llrf engine data, another one for the RF, assuming there are more
engines under the RF daemon to make this worthwhile. The update indices.pl
script which creates these indices also adds the list indices “all.xml” and “cur-
rent.xml”, see section 6.4.4.

The daemon on the sampling computer provides a “current index” soft link
to the current sub-archive index. At the SNS, the serving computer “web2” is a
separate machine with a read-only NFS mount “/archive1” to “archive1:/arch”.
A manually created soft link from /arch/RF... to the NFS share allows access to
the current index in the familiar place, even though read access will of course
follow the first soft link to the “current index” on the NFS share, then on the
actual current index.

6.4.1 Configuration

Of primary interest to the serving computer are the <dataserver> sections of
archiveconfig.xml, which are allowed for each daemon and engine entry:

<dataserver>
<cu r ren t i ndex key= ’ 4901 ’> l l r f </ cu r ren t index >
<index type= ’ b ina ry ’ key= ’ 4902 ’>LLRF data </ index>
<host>web2</ host>

</ dataserver>

• current index tag:
This option is only allowed for engine data server entries. When provided,
the “current index” link created by the archive daemon for this engine will
be served by the data server with the given key and name.

This of course requires the “serving” computer to have access to the cur-
rent index, which resides on the “sampling” machine. The soft link used
for this purpose at the SNS was described in the previous section.

• index tag:
Configures the type of index to create as “list” or “binary”. For an engine,
the index covers every data found under the engine directory, typically
combining the sub-archives from daily or weekly restarts into one mas-
ter index.

For a daemon, the index combines the master indices of engines under
the daemon into one daemon-level master index. This requires that there
are such engine indices, which need to be configured for each engine
entry.

CHAPTER 6. EXAMPLE SETUP 72

If a key is provided, the index is added to the data server configuration. It
might make sense to only provide a key for the daemon-level index, while
the engine-level indices are only used as intermediate steps in construct-
ing the daemon index.

• host tag:
The host where the data server should run. Dataserver entries where
the host element, used as a regular expression, does not match the local
hostname, are ignored.

In addition to the indices specified in <dataserver> sections of the archive
configuration, two more will be created by the update indices.pl script.

6.4.2 send mailbox.pl

In the absence of a writable NFS share for the mailbox directory, this script is
run by a cron-job to send the contents of the mailbox directory to other comput-
ers. For now, this means: It is periodically invoked on “sampling” computers to
send the current mailbox content to the “serving” machine. See command-line
help for details.

6.4.3 update server.pl

This script should be invoked periodically by a cron-job. It checks the mailbox
directory for information about new data on a “sampling” computer, compares
with the archiveconfig.xml information to decide which of that data should be
served on this machine.

It uses secure-copy (scp) to pull new sub-archives onto this computer, op-
tionally with md5 checksum, and finally invokes update indices.pl.

6.4.4 update indices.pl

Reads archiveconfig.xml and creates an indexconfig.xml for each engine and
daemon directory that has a <dataserver>...<host> entry for the local ma-
chine. Where binary indices were requested, the ArchiveIndexTool is invoked.

Next, list indices “current.xml” and “all.xml” are created, containing all the
“current index” entries from the configuration respectively the remaining in-
dex entries. Finally, the serverconfig.xml is updated, starting with entries for
“all.xml” (key1) and “current.xml” (key 2), followed by the indices listed in archive-
config.xml.

CHAPTER 6. EXAMPLE SETUP 73

6.5 Common Tasks

6.5.1 Modify Engine’s Request Files

Locate your archive engine directory and the engine configuration file, for ex-
ample /arch/RF/llrf/llrf-group.xml for the “llrf” engine maintained by the “RF”
daemon. Modify or re-create that configuration. This is often done via a con-
version script in /arch/RF/llrf/ASCIIConfig. If you used another method to create
the engine configuration, this is a good time to remember what you did.

Then, to actually use that new config file, the engine needs to restart.
We could simply wait for the next scheduled restart, in our example the next
Wednesday, 10:20. Alternatively, we can run the llrf/stop-engine.sh script.
Watch the RF daemon, for example via /arch/RF/view-daemon.sh. Within a
few minutes, it ought to detect that the engine had stopped and then restart it.

6.5.2 Add Engine or Daemon

Edit archiveconfig.xml to define the new engine under an existing demon. Or
add a line for a new daemon, then add the new engine under it. Unless you feel
lucky today, use “xmllint -valid archiveconfig.xml” to assert that you preserved
the basic well-formedness of the XML document.

Invoke “scripts/update archive tree.pl”. Per default, it will re-create all dae-
mon and engine directories, so you might want to use the “-s” option to limit its
operation to the new or modified subsystem.

In case the daemon was already running, it won’t learn about the new en-
gine unless you restart it. So run the “stop-daemon.sh” script followed by “run-
daemon.sh” in the daemon directory to restart the daemon, which will then start
any newly added engines.

At the SNS, the data server on web2 also needs a manually created “/arch/-
daemon/engine/current index” soft link for newly added engines which points
to the “current index” on the read-only NFS share.

6.5.3 I want to stop a Daemon

Run stop-daemon.sh.

6.5.4 A Daemon isn’t running

Run start-daemon.sh in the daemon directory. If the daemon keeps quitting,
check its log file for clues.

6.5.5 An Engine isn’t running

All engines should be started by the daemon process. There is no script for
starting an individual engine, and one should not start one manually.

CHAPTER 6. EXAMPLE SETUP 74

Check if the daemon which is supposed to start the engine is actually run-
ning and knows about the engine (“view-daemon.sh”). Does the daemon need
a restart to learn about a new engine?

Otherwise, check the process list to assert that the engine in question is
really not running (UNIX: “ps -aux”). If the engine is actually running but not
responding via its HTTPD, check its CPU usage and the dates and sizes of
the files in the sub-archive that the engine is supposed to write. Is it adding
to the data files? It might respond again after a few minutes, although this of
course indicates that your computer is overloaded and you have to reevaluate
how much you can archive on that machine. If all else fails, remove the engine
process.

Check the log file of the engine, generated in the engine subdirectory, for
any clues. If you are convinced that the engine is not running, but find an
“archive active.lck” lock file in the engine directory, remove it. Now the daemon
should be able to start your engine.

6.5.6 Re-build Indices

Whenever you add or remove a sub-archive, the indices for that engine and
daemon (indexconfig.xml, maybe also binary master index) become obsolete:
They might still list data in a sub-archive that you removed, or not yet include a
new sub-archive.

In case you know that the only change is added data, a run of the up-
date indices.pl script should suffice. But whenever data has been removed,
rearranged, or you suspect a broken master index, because you can retrieve
data from the individual sub-archives but not via the master index, the recipe is
as follows:

• Delete the indexconfig.xml and master index files that refer to the data.
For example, when you rearranged data in RF/llrf/2006, you need to
delete the indexconfig.xml and master index files in RF/llrf and RF.

• Invoke update indices.pl, or wait until update server.pl does this for you,
triggered by a cron job.

6.5.7 Remove Channels, Data

As for removing data from within one sub-archive, see 8.4.1. You can remove
a whole sub-archive, for example a subdirectory “daemon/engine/2006/01 10”,
by deleting that directory and then rebuilding all affected indices.

6.5.8 More Data Management

See the description of the ArchiveDataTool in section 8.4.

Chapter 7

Setup, Installation

In general, the archiver toolset should build on Unix-type operating systems
that are supported by EPICS base 3.14. Specific instructions for Linux (RedHat
and Mandrake) as well as Apple Mac OS X follow.

7.1 Compilation

The archiver tools use the EPICS build system as for example described in
the “EPICS: Input/Output Controller Application Developer’s Guide” for Release
3.14.4. This means you need the following prerequisites:

1. EPICS Base R3.14.4 (or later) needs to be built and installed.
Unless you are running Linux, this might require getting a compiler, perl
and gnumake.

2. An EPICS extensions setup: “configure” directory with the RELEASE file
appropriately configured to point to your EPICS base installation.

3. ChannelArchiver sources, placed in the “src” subdirectory of your EPICS
extensions directory tree.

All the above is either pretty obvious to those who know it already or beyond
this manual to explain, in which case we have to refer you to the EPICS web
site http://www.aps.anl.gov/epics.

You need to read and maybe adjust Tools/ToolsConfig.h and LibIO/Archiver-
Config.h to suit your needs. The most important parameter in there is “CON-
VERSION REQUIRED”. Assert that it is correctly configured! If you use the
wrong setting for CONVERSION REQUIRED, you might not notice any prob-
lems for some time, but your data files will be invalid when transferred to an-
other operating system; your network data server will only provide garbage
data to network clients.

75

http://www.aps.anl.gov/epics

CHAPTER 7. SETUP, INSTALLATION 76

One good thing to do for a sanity check is to run the ArchiveExport tool on
the data provided in the DemoData subdirectory. Try to retrieve the PV “Dou-
blePV”. You should see values in the range of 0...10 with time stamps in recent
years. You will not see the exact time stamps shown in the example, unless
you reside in the “Eastern” US time zone (UTC-5), as explained in section 2.6:

Arch iveExpor t DemoData / index DoublePV − t e x t
Generated by Arch iveExpor t 2 . 1 . 4
Method : Raw Data

Time DoublePV [a . u .]
03/05/2004 18:54:41.742248000 2.7
03/05/2004 18:57:50.543731200 3
03/05/2004 18:57:50.563760000 3.5
03/05/2004 18:57:50.583788800 3.9
. . .

You will of course only be able to test ArchiveExport after you have success-
fully built the archiver toolset, so read on. In addition to the configuration of
the archiver sources themselves, some open source tools and libraries are re-
quired which are listed in the following subsections. They are included in the
“ThirdParty” subdirectory of the archiver sources.

With all the required “ThirdParty” components in place, building the Chan-
nelArchiver should be reduced to typing “make” in the ChannelArchiver source
directory, followed by the optional setup of the Matlab/octave glue code which is
described in a README file in the Matlab subdirectory of the ChannelArchiver
sources.

7.1.1 XML-RPC

The archiver’s network data server uses XML-RPC. The XML-RPC Setup re-
quires the installation of at least the C/C++ support. The Java archive data
client includes the JAR files for XML-RPC access from Java. If you want to
access the archive data server from e.g. perl, this would mean you have to in-
stall XML-RPC support for perl, too (one of which is included in the ThirdParty
subdirectory of the archiver sources).

For C and C++, we use xmlrpc-c from http://xmlrpc-c.sourceforge.net. The
Makefiles in ChannelArchiver/XMLRPCServer assume this to be installed in
the default location, that is under /usr/local.

With RedHat 6.2, xmlrpc-c compiled out of the box. With everything else, it
has been a varying pain in the eyebrow. Under RedHat 9.0 and Mandrake 10,
it ran into a compile-time error that could be fixed by un-commenting “using
namespace std;” in the header file which reported the error. Under Fedora
Core 2 and Mandrake 10, there were additional errors that can be fixed by
replacing includes for “strstream.h” with “strstream” in the affected files. Both
RedHat AS or ES and Mandrake 10 needed additional packages, see below.

http://xmlrpc-c.sourceforge.net

CHAPTER 7. SETUP, INSTALLATION 77

NOTE: The default serialization code in xmlrpc-c-0.9.9 will serialize sufficiently
small numbers as zero, see details in section 4.4.5. The “ThirdParty” subdi-
rectory contains the sources for xmlrpc-c-0.9.9 together with a patch files that
corrects the “using namespace std;” and the serialization issue as well as the
“strstream” problem. Under RedHat 9 respectively Mandrake 10, the complete
installation would then look as follows:

cd ChannelArchiver / Th i rdPar ty
t a r vzx f xmlrpc−c−0.9 .9 . t a r . gz
cd xmlrpc−c−0.9.9
. / con f igu re
Patch f o r s e r i a l i z a t i o n and name spaces
patch −p1 < . . / patch xmlrpc−c−0.9.9
Fedora and Mandrake 1 0 patch f o r s t rs t ream
SKIP THIS PATCH ON REDHAT 9 !
patch −p1 < . . / patch xmlrpc−c−0.9.9 s t r s t ream
make
su
make i n s t a l l

Since the first patch also affects Makefiles which are created as a result of
“configure”, you might prefer to read that patch file and apply the changes
manually when you’re not on RedHat 9 or Mandrake 10.

For RedHat Enterprise Linux Workstation 4 (gcc 3.4.4), I needed to delete
an empty “default:” tag in a case statement in line 103 of src/validatee.c, be-
cause the compiler considered it an error.

For Mac OS X, a version with patched configure scripts [6] that also includes
the “small numbers” patch mentioned above is included in a different tar file:

t a r vzx f xmlrpc−c−0.9.10 darwin . tgz
cd xmlrpc−c−0.9.10
. / con f igu re
make
sudo make i n s t a l l

The XML-RPC library depends on other packages. The “configure” step
will report errors in case those are missing. For RedHat, those packages are
usually included in the distribution but might not have been installed by default,
so look for the RPMs on your RedHat CDs. The following are also provided in
the ThirdParty subdirectory:

w3c-libwww

This is needed to compile the XML-RPC library. For Readhat or Fedora, you
can instead install the libwww and libwww-devel RPMs that come with the OS.
For Mandrake 10, you can use the w3c-libwww sources as is:

CHAPTER 7. SETUP, INSTALLATION 78

cd ChannelArchiver / Th i rdPar ty
t a r vzx f w3c−libwww −5.4 .0 . tgz
cd w3c−libwww−5.4.0
. / con f igu re
make
su
make i n s t a l l

Mac OS X requires a patch to the configure script [6]:

cd w3c−libwww−5.4.0
patch < . . / w3c−libwww−5.4.0 osx patch
. / con f igu re −−enable−shared −−enable−s t a t i c \

−−with−z l i b −−with−s s l
make

7.1.2 Xerces XML Library

The Xerces library is used to parse the XML configuration files of the Archive-
Engine, IndexTool, and the network data server. See “Xerces C++” under

http://xml.apache.org/index.html

or try this direct link:

http://xml.apache.org/xerces-c/index.html

to get the sources. The Makefiles assume this to be installed under /usr/local.
Example installation under RedHat:

t a r vzx f xerces−c−cu r ren t . t a r . gz
cd xerces−c−src2 4 0
expor t XERCESCROOT= ‘pwd ‘
cd $XERCESCROOT/ src / xercesc
autoconf
. / runConf igure − p l i n u x −cgcc −xg++\

−minmem −nsocket \
− t n a t i v e − rp th read \
−P/ usr / l o c a l

make
su
make i n s t a l l

For Mac OS X the runConfigure looks like this:

. / runConf igure −p macosx −n na t i ve −P / usr / l o c a l

http://xml.apache.org/index.html
http://xml.apache.org/xerces-c/index.html

CHAPTER 7. SETUP, INSTALLATION 79

Newer compilers (like gcc 3.4.4 for RedHat WS 4, or gcc 4.0 as used on Mac
OS 10.4) need this patch:

Add
inc lude <xercesc / framework / MemoryManager . hpp>

to
src / xercesc / u t i l / RefArrayOf . hpp

7.1.3 Expat

As an inferior alternative to Xerces, the Expat library is supported after chang-
ing Tools/FUX.h. Expat comes with e.g. RedHat 9, otherwise see

http://expat.sourceforge.net.

Expat might be a little faster and easier to install, but it does not offer validation,
so it will be up to you to assert that all XML configuration files are 100% perfect.

7.1.4 XML-Simple

This XML library for perl is used by the ArchiveDaemon. It is available from

http://www.cpan.org.

t a r vzx f XML−Simple −2.09. t a r . gz
cd XML−Simple−2.09
p e r l Makef i le . PL
su
make i n s t a l l

7.1.5 Frontier

Frontier is an XML-RPC library for perl. It is used for tests of the XML-RPC
Archive Data Server, including the ArchiveDataClient.pl test script. Under Red-
Hat 9.0, Fedora 2 and Mandrake 10, it was sufficient to install Frontier-RPC-
0.07b4 like this:

t a r vzx f F ron t i e r−RPC−0.07b4 . t a r . gz
cd F ron t i e r−RPC−0.07b4
p e r l Makef i le . PL
sudo make i n s t a l l

RedHat 6.2 was hopeless because many of the required perl packages were
missing.

Users who want to experiment with the perl client, but lack the privilege to
install in /usr/local can install a private copy like this:

http://expat.sourceforge.net
http://www.cpan.org

CHAPTER 7. SETUP, INSTALLATION 80

. . .
p e r l Makef i le . PL PREFIX=˜
make i n s t a l l
expor t PERL5LIB = ˜ / l i b / pe r l5 / s i t e p e r l / 5 . 8 . 0

You might have to adjust the PERL5LIB settings to reflect your perl version.

7.2 Installation

There are no specific installation procedures for the ArchiveEngine, Archive-
Export, and most other Channel Archiver components. The binaries for them
end up in the standard EPICS extension directories, which should therefore
be included in the search path. If the archiver libraries were build as shared li-
braries, most Unix systems will require the extensions’ lib directory be added to
the LD LIBRARY PATH. The same applies to other helper libraries like Xerces
that might be in the form of shared libraries.

The usage of the ArchiveEngine and other archiver tools migh require con-
figuration files, the format of which is described as part of the tool’s dedicated
section in this manual.

The ArchiveDataServer requires integration with your web server. The pro-
cess is exemplified in the Data Server chapter starting on page 32.

7.2.1 DTD Files

Many of the configuration files use XML, and document type definitions are
provided in the form of DTD files (See ArchiveDataServer configuration in 4.1,
ArchiveEngine config. in 3.1, ArchiveDaemon in 6.3, ArchiveIndexTool config.
in 5.1). You are strongly encouraged to reference these DTD files in all your
XML files, and to use the validating Xerces XML library, so that all your XML
get valiated while the ChannelArchiver tools use them. This means that your
XML files need to include a DOCTYPE declaration that points to the location of
the respective DTD file. In practice, there are at least three ways to accomplish
this:

1. Whereever you create an XML file, you copy the DTD into the same di-
rectory. Then you can refer to the DTD like this:

<!DOCTYPE engineconf ig SYSTEM ” eng ineconf ig . dtd ”>

Not the best idea because you need multiple copies of the DTD and this
is hard to maintain in case the DTD gets updated.

2. You install the DTD files in a common location in the local file system, e.g.
in “/arch”. Then you can refer to the DTD like this:

CHAPTER 7. SETUP, INSTALLATION 81

<!DOCTYPE engineconf ig
SYSTEM ” / archr / eng ineconf ig . dtd ”>

This setup is in use at the SNS. If you use the archive tools on more than
one computer, each machine might require a copy of the DTDs.

3. You install the DTD files in the directory tree of a web server that is ac-
cessible to all your computers. Then you can refer to the DTD via a URL
like this:

<!DOCTYPE engineconf ig
SYSTEM ” h t t p : / / webserver / archdtd / eng ineconf ig . dtd ”>

This centralizes the installation, but you now have the added dependency
on the web server.

Chapter 8

Data Format Details

8.1 Binary Index Files, RTree

A binary index file contains a list of all the channels in an archive, and for each
channel it contains information about the data blocks which are available in the
Data Files of an archive. The archiver toolset uses index files for two slightly
different purposes:

1. Each ArchiveEngine creates an index for the data files that it writes. We
refer to this combination of index and data files as a Sub-Archive. If a sub
archive contains data for a certain channel and time range, it will contain
that data only once.

2. We can create a Master Index that points to data in several sub archives.
Several sub-archives might contain data for the same channel and time
range. When we combine sub-archives into a master index, we can as-
sign Sub-Archive Priorities to determine what data is considered more
important.

Another important difference between sub-archive index files and master index
files lies in the fact that the sub-archive index files only the names to their data
files: The sub-archive index resides in the same directory as its data files, so a
path name is not required to get from the index to the data files. A sub-archive
index and its data file can be moved to a new location. As long as the index file
and its data files remain together in one directory, the location of that directory
does not matter.

The master index file on the other hand contains the path names to its data
files, because different sub-archives can use the same data file names within
their sub-archive directory. We can only distinguish these data files by their full
path. Once a master archive index has been created, the sub-archives must
therefore not be moved. After relocating any of the sub-archives, the master
index needs to be recreated.

82

CHAPTER 8. DATA FORMAT DETAILS 83

Inside the index file, the channel names are maintained in a hash table and
the data block information is kept in a modified RTree structure. An RTree [4] is
a balanced tree tailored for holding multidimensional data like rectangles, allow-
ing lookup of rectangles via points that fall inside rectangles. Sergei Chevtsov
extended this concept to handle time ranges by requiring that the leaf node
entries are non-overlapping and sorted in time.

Each RTree node consists of several records. How many records there are
per node is determined by a tunable parameter M : The archiver tools use M
as the upper limit of records per node, i.e. a node will simply contain up to
M records. (The literature often applies M in a slightly different way, where
nodes contain up to 2M − 1 records.) The records in the leave nodes of the
tree point to data block information (i.e. path to a data file and offset inside that
data file) and the time range that is covered by the data block. The records do
not overlap, i.e. no two records will cover the same time range, and the records
are sorted in time. Since the actual data blocks might overlap (at least for a
master index), more than one non-overlapping record might refer to the same
data block. Records in parent nodes reflect the time range covered by all their
child node records, up to the root node records which hold the total time range
covered by all the data blocks.

Figure 8.1: RTree Demo, refer to text.

Figure 8.2: RTree Demo, refer to text.

Fig. 8.1 demonstrates two trees with M = 3. The one to the left covers
the total time range from “1” to “7” (in the real world, these numbers would be
much bigger since they represent seconds since some “Epoch”). The data for
the time range from e.g. “3” to “4” can be found in data file “FileA” at offset 0x30.

CHAPTER 8. DATA FORMAT DETAILS 84

To handle a request for a time range [3;6], we first determine if that range is
covered by the tree at all by checking the root’s time range. Since that is the
case, we go down one level, check the sub-nodes, go down again etc. until we
end up at the data blocks.

Fig. 8.2 demonstrates how the two trees from Fig. 8.1 would be combined
into a Master Index, assuming that the tree for FileA resides in directory dir a
and the data for the second sub-archive resides in dir b relative to the master
index. Note how all the data blocks now include a path together with a file
name. Since the sub-archive for FileA was listed first in the configuration of the
master index, its data blocks take precedence over those from FileB whenever
there is an overlap.

The examples used a small number for M so that one can see the tree
structure even though we only have a few data blocks. Bigger values of M will
reduce the number of read and write operations because the tree is accessed
node by node, reading respectively writing all M records of a node in one
system call. A big M value will also reduce the height of the tree, as well as
the number of nodes and read/write calls. On the other hand, the size of a
node obviously grows with M , and the time for reading respectively writing a
single node can slightly increase. In general, the number of read/write system
calls has a bigger impact on the performance than the size of the individual
reads/writes. The records within a node are accessed via a linear search over
all the records in a node. A bigger M will require slightly more CPU time for
this linear search, which again is neglegible compared to the time required for
disk access. Overall, a bigger M is likely to increase performance because it
reduces the number of disk accesses. The mayor drawback to a big M results
from possible fragmentation: If you create many small sub-archives, each tree
of the sub-archive will only contain few entries. The minimum size of the tree
as well as the size increment whenever a new node needs to be added is
determined by M . Big values of M can result in a lot of unused space in the
index file, creating unnecessarily big index files. Section 8.5 will present some
quantitative details on the performance of the RTree index.

8.1.1 Implementation Details

Table 8.1 shows the basic layout of an index file. The header of the index
file contains a 4-ASCII character magic id like ’CAI2’ for “Channel Archiver
Index Type 2”, and the hash table anchor. Those 12 bytes constitute “reserved
space” for the FileAllocator class. What follows is start- and end pointers for
the FileAllocator’s list of allocated and available items, because the remaining
file space is handled by the FileAllocator class. The first allocated region is
the NameHash, so it’s start location would be known. Each hash table entry
points to the start of channel entries that hashed to the respective value, and
each channel entry contains the anchor for its RTree. The “RTree pointer” in
the Hash Entry is actually a file name and an offset. Initially, that file name is
empty, because all RTrees are in the same index file that contains the hash

CHAPTER 8. DATA FORMAT DETAILS 85

Offset Content
0x0000 ’CAI2’
0x0004 NameHash anchor: start (0x30), size N
0x000C FileAllocator used list: size, start (0x24), end
0x0018 FileAllocator free list: size, start, end
0x0024 FileAllocator header: size, prev(0), next(??)
0x0030 Hash Table Entry 0:

Pointer to first entry for this hash value
0x0034 Hash Table Entry 1:
... ...
?????? Hash Table Entry N-1:
... ...
?????? FileAllocator header: size, prev(0), next(??)
?????? Hash Entry:

next, RTree pointer, channel name
... ...
?????? FileAllocator header: size, prev(0), next(??)
?????? RTree: pointer to root node, M value
... ...

Table 8.1: Index file: Example layout.

table. Eventually, that index file might get too big, so the file format already
allows for RTree entries to point to other index files. Like every file block after
the “reserved space”, the hash table and each channel entry are preceded by
a FileAllocator header.

An RTree entry consists of the pointer to the root node and a number of
records per node M . The RTree nodes are interlinked as shown in the example
in Fig. 8.1 and 8.2, where each node and data block is allocated from the
FileAllocator class. For details of how the nodes and data blocks are written to
the disk, please refer to the source code.

8.2 Data Files

The data files store the actual data, that is the time stamps, values and the
meta information like display limits, alarm limits and engineering units. The
archiver stores data for many channels in the same data file. There aren’t
separate data files per channel because that would produce too many files and
slow the archiver down. The names of the data files look like time stamps. They
are somewhat related to the time stamps of the samples in there: The name
reflects when the data file was created. We then continue to add samples until
the engine decides to create a new data file. This means that a data file with a
name similar to yesterday’s date can still be filled today.

CHAPTER 8. DATA FORMAT DETAILS 86

Conclusion 1: Ignore the names of the data files, they don’t tell you anything
of use about the time range of samples inside.

8.2.1 Implementation Details

Offset Content
0x0000 ’ADF1’ (†)
... ...
0x0FFC ’INFO’ (†)
0x1000 Numeric CtrlInfo

display limits, units, ...
... ...

’DATA’, channel name (†)
0x2000 Data Header

prev buffer: ““, 0
next buffer: “X“, 0x4000
CtrlInfo: 0x1000
dbr type: dbr time double
buffer size, amount used, ...
Buffer: dbr time double, dbr time double, ...

... ...
’DATA’, channel name (†)

0x4000 Data Header
prev buffer: “X“, 0x2000
next buffer: “Y“, 0x4000
CtrlInfo: 0x1000
...
Buffer: dbr time double, dbr time double, ...

... ...

Table 8.2: Data file: Example layout for a data file “X”.

Table 8.2 shows the basic layout of a data file “X”, with items marked by (†)
only available since version 2-1-1 of the ChannelArchiver toolset. The ’DATA’
marker for the Data header at offset 0x2000 would start at

0x2000 - 4 - length(channel name) - 1

in order to allow for the string “DATA” and the null-terminated channel name.
Most important, the data file primarily stores data. It does not need to know

about the channel names to which the data belongs, except for the recently
added (†) tags. The index would for example tell us that the data of interest
for channel “fred” can be found in data file “X” at offset 0x2000. In there, the
Data Header points to the preceding buffer (none in this case) and the following

CHAPTER 8. DATA FORMAT DETAILS 87

buffer (in this case: same file, offset 0x4000). It also provides the data type,
size and number of samples to be found in the Data Buffer which immediately
follows the Data Header.
Conclusion 2: A data file is nearly useless without the accompanying index
file, so you should not separate them.
The Data Buffer contains the raw dbr time xxx-type values as received from
ChannelAccess. The meta information, that is: limits, engineering units or for
enumerated channels the enumeration strings, are stored in a CtrlInfo block.
Each Data Header contains a link to a CtrlInfo block, in this case one at offset
0x1000 which happens to contain numeric control information. Each buffer
contains a certain number of samples. Whenever a buffer is full, a new one is
added. The new buffer might be created at the end of the same data file, but the
engine might also create a new data file after a certain time or whenever a data
file gets too big. In the example from Table 8.2, the first buffer at offset 0x2000
links to a next buffer at offset 0x4000 in the same file “X”, and that buffer in turn
points to another buffer in a different file “Y”. Note that both the buffer at offset
0x2000 and the one at offset 0x4000 share the same meta information at offset
0x1000, probably because the meta information has not changed.
Conclusion 3: Do not delete individual data files, because this will break the
links between data files and result lost samples. Do not remove the index file.
All the data files that were created in one directory together with an index file
need to stay together. You can move the index and all data files into a different
directory, but you must not remove or rename any single data file.

8.3 Index and Data File Repair

Beginning with version 2-1-1 of the ChannelArchiver toolset, the items marked
with (†) in Table 8.2 were added. A 4-ASCII character magic ID at the start of
the data file identifies the new file type. Each CtrlInfo if preceded by ’INFO’
and each Data Header is preceded by ’DATA’ followed by the null-terminated
channel name.

The “RecoverIndex” subdirectory contains a tool thankfully provided by Noboru
Yamamoto which can be used to repair a damaged or lost index file, by search-
ing the data files for the ’INFO’ and ’DATA’ tags. See the Readme.txt in that
subdirectory for details.

As for data file repair, one can use the Data Tool described in the following
section to copy all the data that’s still accessible in a damaged data file to a
new archive.

8.4 Data Tool

The ArchiveDataTool allows investigation of data files as well as conversion
from old directory-file based archives into ones that utilize an index file. It also
allows some basic data management as described in the next sections.

CHAPTER 8. DATA FORMAT DETAILS 88

USAGE: ArchiveDataTool [Options] < index− f i l e >

Options :
−help Show help
−verbose < l e ve l > Show more i n f o
− l i s t L i s t channel name i n f o
−d i r2 index < d i r . f i l e > Convert o ld d i r e c t o r y f i l e

to index
− i ndex2d i r < d i r . f i l e > Convert index to o ld

d i r e c t o r y f i l e
−M <1−100> RTree M value
−blocks L i s t data blocks o f a channel
−Blocks L i s t a l l data blocks
−dot index <dot f i lename > Dump contents o f RTree index

i n t o dot f i l e
−channel <name> Channel name
−hashin fo Show Hash tab le i n f o
−seek < t ime > Perform seek t e s t
− t e s t Perform cons is tency t e s t s

8.4.1 Delete Channels, Data

Given one index file and its associated data files, you cannot remove a channel,
the data for a channel, or the data for a certain time range from that sub-archive.
In principle one can imagine deleting a channel’s information from the index file,
but that simply turns its data blocks inside the data files into orphans. It does
not release the disk space occupied by the channel’s samples, so why bother?
Similarly, removing the index entries of one channel for a specific time range
would not free up the associated disk space inside the data files.

Looking at data files with names that indicate dates, for example “20051210”,
“20051211” and “20051212”, one might be led to believe that deleting the file
“20051211” frees up disk space and deletes the data for that day in December,
2005. It will free up disk space, alright. But the file name “20051211” only
indicates the creation date of that file. It will contain samples of channels from
that date on, until data buffers inside the file get filled. So it can contain data
up to Christmas 2005 and further. For other channels, data for Dec. 11 and
12 will actually be in the file “20051210”, because a data buffer in there was
still being filled on Dec. 12. The only way of knowing what channels and time
ranges reside in which file is to look at all the data blocks for all the channels
(“-blocks” option). Furthermore, since the data blocks are interlinked, deleting
one data file in a sub-archive might confuse the retrieval routines.
NOTE: The short summary is that one should under no circumstances try to
directly modify or delete index and associated data files of a sub-archive.

What can you do? Delete the whole set of index and associated data files!
This is one reason for creating daily or weekly sub-archives, so you can move,

CHAPTER 8. DATA FORMAT DETAILS 89

copy and delete them without affecting other sub-archives.
One can also use the “-copy” option to copy a time range into a new sub-

archive, and then delete the original. After deleting a sub-archive or replacing
it with a copied-out time slice, you have to recreate indices that referred to that
sub-archive.

8.4.2 Combine Sub-Archives

The generation of daily or weekly sub-archives reduces the amount of data
endangered by ArchiveEngine crashes. In the long run, however, it is often
advisable to combine the daily or weekly sub-archives into bigger ones, for
example monthly. The smaller number of sub-archives is easier to handle when
it comes to backups. Is also provides slightly better retrieval times. In the
following example, we assume that it’s February 2004 and we want to combine
daily vacuum sub-archives into one for the month of January 2004.

cd vacuum/2004
mkdir 01 xx
ArchiveDataTool −copy 01 xx / index 01 01 / index \

−e ” 01/02/2004 02:00:00 ”
ArchiveDataTool −copy 01 xx / index 01 02 / index \

−s ” 01/02/2004 02:00:00 ” −e ” 01/03/2004 02:00:00 ”
ArchiveDataTool −copy 01 xx / index 01 03 / index \

−s ” 01/03/2004 02:00:00 ” −e ” 01/04/2004 02:00:00 ”
. . .

Note that we assume a daily restart at 02:00 and thus we force the Archive-
DataTool to only copy values from the time range where we expect the sub-
archives to have data. This practice somewhat helps us to remove samples
with wrong time stamps that result from Channel Access servers with ill-configured
clocks.

There is a perl command make compress script.pl that aids in the creation
of a shell script for the ArchiveDataTool, but you need to review it carefully
before invokation. Depending on your situation, monthly archives might either
be too big to fit on a CD-ROM or ridiculously small, in which case you should
try weekly, bi-weekly, quarterly or other time ranges for your sub-archives.

After successfully combining the daily sub-archives into a monthly one, you
need to move that dayly data out of the way and finally rebuild indices that use
the data.

8.4.3 Reduce the Data Size, Data File Repair

The simple “copy” of one sub-archive onto another one like this will keep all
channels and samples, but typically reduce the size of the data files. For daily
sub-archives, it can be a reduction down to 1/10th of the original file sizes.

CHAPTER 8. DATA FORMAT DETAILS 90

cd vacuum/2004
mkdir 01 01 copy
ArchiveDataTool 01 01 / index −copy 01 01 copy / index

The reason lies in the fact that the data files contain data buffers, allocated by
the engine without knowing how many samples to expect. So initially, a small
buffer is allocated. When full, a new buffer of twice the original size is allocated
and so on, up to a maximum buffer size. For engines that run briefly, for exam-
ple only one day, many of these buffers are partially filled when the sub-archive
is closed. When copied, the archive data tool can count the available samples
before allocating data buffers for the copy, and thereby reducing the number of
buffers and also avoiding any unused buffer space.

In addition, the copy process will skip data errors, omitting samples with
time stamps that go backwards in time, or data buffers with invalid pointers to
control information. It will not perform any real data file repair in the sense of
magically assiging correct time stamps or control information, so the affected
samples are simply lost, but the resuling copy of the original sub-archive should
no longer result in any error messages on retrieval.

8.5 Statistics

It is impossible to provide universal performance numbers for the components
of the ChannelArchiver toolset. Tests of a realistic setup are always influenced
by network delays: IOCs communicate with ArchiveEngines, data client tools
query data from the network data server. And while the archiver tools of course
share the CPU with all the other applications that happen to run on the same
CPU, the CPU speed is less important. Most crucial is the hard disk perfor-
mance. Access to data on NFS-mounted disks is by orders of magnitude slower
than access to data on local disks. Hard disk access is also hard to reproduce:
At least under Linux, the second run of a test is always faster because the
operating system caches the disk access. In general, the fewer files and the
smaller the involved files are, the better as far as speed is concerned, because
the operating system will cache access to files as long as memory allows.

The RTree is a balanced tree. Mathematically, this means that the number
of read requests required to locate a node in an RTree depends on the height
of the tree, which is again logarithmically related to M and the number of nodes
in the tree. An RTree with M=50 and height 5 for example has one root node
with 50 pointers to sub-nodes, then up to 502 nodes on the second level and
so on, resulting in access to more than 108 records on the fifth level, that is:
with only 5 reads requests to the disk. In practice, however, there can be a big
time difference between 5 read requests to a file of 10 MB total size compared
to 5 read requests to a file of 500 MB total size, because the former could
be completely buffered by the operating system, while access to the latter will
result in individual disk access operations.

The following are performance values obtained on a computer with a 1 GHz

CHAPTER 8. DATA FORMAT DETAILS 91

CPU, an ordinary IDE disk, that was mostly idle while the archiver tools ran.
The corresponding values on a machine with an 800 MHz CPU, concurrently
used by other people, but faster hard disks (Mylex DAC960PTL1 PCI RAID
Controller with 5 Quantum Atlas 10K drives) were slightly better.

We also provide some comparison to the previous architecture that used
the same data file format but instead of the RTree-based index there were
“Directory Files”: A channel name hash table with pointers to the very first and
last data block.

8.5.1 Write Performance

As a baseline for raw data writing speed, the ’bench’ program that can be found
in the ChannelArchiver/Engine directory consistently writes at least 80000 val-
ues per second on the test computer.

8.5.2 Index Performance

Figure 8.3: RTree M value tuning for small index, see text.

Performance and size of the index depend on the M value configuration of
the RTree. Fig. 8.3 displays the file size and the time needed to create an index

CHAPTER 8. DATA FORMAT DETAILS 92

for a small archive with 5100 channels. The samples occupy 8400 data blocks
in a 12 MB data file. The ArchiveIndexTool was used to convert the existing
index file of the archive into new indices with different M values.

From the number of channels and data blocks it follows that the samples
for most channels occupy only one or two data blocks. Consequently almost
all channels can be handled by degenerated RTrees, each with a single node
that is both root and leaf of the tree, using only 1 or 2 records in that node.
Any records beyond the first few remain unused. Fig. 8.3 clearly indicates how
the file size grows linearly with M due to those unused records. The changes
in the time needed to create an index can probably be explained as follows:
After creating the first new index with M = 3, the time dropped observably
because the operating system would from now on cache most read requests
to the original index. With growing M , the time again increases caused by the
growing file sizes of the new indices.

Figure 8.4: RTree M value tuning for master index, see text.

Fig. 8.4 compares the file sizes and creation time over M of a master index
that covers 27 sub-archives, a total of 635 MB of data files containing 248261
data blocks for 6164 channels. The smaller archive from the preceding section
is actually one sub-archive of this master index. Because some channels have
only very few samples, while other channels might have changed every 30
seconds, there cannot be one M value that is ideal for every channel handled

CHAPTER 8. DATA FORMAT DETAILS 93

by the master index. By creating the master index with different values of M ,
we are looking for a compromise that gives best index performance across
channels.

Fig. 8.4 shows that values between 10 and 50 result in a smaller mas-
ter index than M values outside of this range. Remember that for a given
height, the number of leaf records in an RTree grows exponentially with M , so
slight increases of M beyond 50 will vastly increase the number of leaf records.
Archives with twice or ten times the number of data blocks will therefore not re-
quire M values that are equally 2 or 10 times bigger. Only very small increases
of M would be beneficial. If we consider that in general those bigger archives
will also contain channels with only a few samples, M = 50 will probably be “as
good”.

In the following, M was kept at 50, the default for most archive tools.

• 12 sub-archives, 1.2 MB of old directory files, 1.4 GB Data files:
Converting directory files into index files with M = 50: Just under 3 min-
utes, resulting in 11 MB for the new index files.
Creating a master index: 37 seconds for a master index of 9 MB. The
master index is slightly smaller than the sum of the individual sub-indices
because of better RTree utilization: The M was configured to be 50 in
all cases and many channels in the sub-archives use only a fraction of
a single RTree node, down to an average record usage of 8%, while the
master index uses around 50%. A re-run of the ArchiveIndexTool tool is
faster because it detects data block that are already listed in the mas-
ter index and therefore not added again. In this case, the re-run took
10 seconds.

• 92 sub-archives, 12 MB directory files, 2.3GB of data files:
Converting into 61 MB of index files: About 12 minutes.
Creating a master index: Under 2 minutes, the resulting index uses about
18 MB. Re-run: 30 seconds.

8.5.3 Impact of Data Management on Performance

As a less-than-perfect example, we created a collection of mostly hourly sub-
archives, resulting in 297 sub-archives, 158 MB index files, 307 MB data files.
Creation of a master index took about 25 minutes, resulting in a master index
file size of 65 MB. A re-run of the Index Tool took about 3 minutes.

By combining the hourly sub-archives into monthly ones, the count was
reduced from 297 sub-archives to only 16. This took about 8 minutes, resulting
in 5.5 MB for index files and 148 MB for data files. Creation of a master index
for the 16 sub-archives now took 26 seconds, a re-run was further reduced to
1.5 seconds. Overall this shows that periodic data management, combining
individual sub-archives into fewer ones, will reduce not only the number of files
but also file sizes, resulting in better performance.

CHAPTER 8. DATA FORMAT DETAILS 94

8.5.4 Binary Index compared to list index

The following data was actually taken with the old “multi archive”, which is ba-
sically equivalent to the current “list” index which simply uses a linear list of
sub-archives without any further optimization.

We took a test archive consisting of 638 small sub-archives, where the data
files totaled only a little over 400 MB. A master index was created as well as a
“multi archive” file that lists the 638 sub-archives. Creation of that master index
too 15 min.OB

• Time to list all 540 channel names: <1 second.
This takes 40 seconds with the old “multi archive” file. The results for find-
ing names that match a pattern or determining the available time range
for a channel are similar.

The new index is clearly superior in this test case simply because the data
is contained in one index, while the “multi archive” file required access to
all 638 sub-archives.

• The time to retrieve a few samples from the start, middle or end of the
archive is fairly constant around 0.1 seconds with the new index. With
the previous implementation, the lookup time for the samples depends
on where the respective sub-archive is positioned in the multi-archive file.
In one test it ranged from 0.1 to 10 seconds. When the data is found in
the first few sub-archives listed in the multi-archive file, the times compare
to the new index. The further one goes down the list of sub-archives as
they appeared in the multi-archive file, the longer it takes. A reproducible
test is difficult because the preceding tests (list all channels) causes the
operating system to cache many of the sub-archive’s directory files.

8.5.5 Retrieval Performance

Tests of the retrieval performance often include not only the code for getting
at the data but also for presenting it. In the case of the command-line Archive
Export program this would be the process of converting time stamps and val-
ues into ASCII text and printing them. In the following tests, the output was
redirected to a file.

• Use ArchiveExport to dump all the 143000 values for a channel: 4 sec-
onds, translating into 35700 values per second.

• Use ArchiveExport to dump all the values of one month for 7 channels
in a spreadsheet format, which adds the effort for ’staircase’ interpolation
to the previous test case: Each channel had 20000 to 30000 values.
The interpolation generated a 95000 line spreadsheet in 11 secs, that is
around 8600 lines/sec. On a second test run, the time was reduced to 7
seconds, again showing the impact of buffering by the operating system.

CHAPTER 8. DATA FORMAT DETAILS 95

• Use Matlab to retrieve the first 500 raw samples of the same 7 channels:
The ArchiveServer ran 0.7 seconds, Matlab used a total of 1.7 seconds
from sending the request to receiving the data.

• Use Matlab to retrieve data for the same 7 channels, asking the network
data server to reduce the raw data (which formed the 95000 line spread-
sheet in the previous test) into 500 “Plot Bins”: Around 1500 values per
channel were retrieved in 5 seconds. The ArchiveDataServer.cgi ran 3
seconds, so about two seconds were added by the web server, network
transfer, Matlab MEX code and Matlab.

• Use the Java Archive Client to retrieve the same 7 channels into 800 “Plot
Bins”: Around 2100 values per channel were retrieved and plotted in 12
seconds. (When using the alternate machine with the slower CPU but
RAID disks as the data server, the time was reduced to 8 seconds). The
Java client was still usable, but slow to respond with this amount of data:
Zoom requests took about 2 seconds.

This shows that the initial lookup of a channel and the location of the sam-
ples in the data files requires a certain time. Reading the values can then be
quite fast and reach more than 30000 values per second when simply fetching
the raw samples. Interpolation or binning can internally reach this speed when
investigating the raw data,

The network data server typically adds about 1 second of overhead.

Chapter 9

Common Errors and
Questions

The following explains error messages and commonly asked questions.

9.1 Why is there no data in my archive?

The ArchiveEngine should report warning messages whenever the connection
to a channel goes down or when there is a problem with the data. So after a
channel was at least once available, there should be more or less meaningful
messages. After the initial startup, however, there won’t be any information
until a channel is at least once connected. So if a channel never connected,
the debugging needs to fall back to a basic CA error search:
Is the data source available? Can you read the channel with other CA client
tools (probe, EDM, caget, camonitor, ...)? Can you do that from the computer
where you are running the ArchiveEngine? Does it work with the environment
settings and user ID under which you are trying to run the ArchiveEngine?

9.2 Why do I get #N/A, why are there missing val-
ues in my spreadsheet?

There are several possible reasons for not having any data: There might not
have been any data available because the respective channel was discon-
nected or the archive engine was off. Consequently there is no value, and
a spreadsheet might show ’#N/A’ in the value column. When you look at the
status of the channel, those cases might reveal themselves by status values
like “Disconnected” or “Archive Off”. (The ArchiveExport tool, Java client and
other programs usually have a “status” or “text” option that you need to use in
order to see the status. By default, you might only see the value).

96

CHAPTER 9. COMMON ERRORS AND QUESTIONS 97

The ArchiveEngine might also have crashed, not getting a chance to write
“Archive Off”. That would be a likely case if no channel has data for your
time range of interest. The most common reason for missing values, however,
simply results from the fact that we archive the original time stamps and you
are trying to look at more than one channel at a time. See the section on time
stamp correlation on page 10.

9.3 Why do I not get what I think I should get from
the network data server?

I do not know a good way to debug the archive data server when it runs as
a CGI tool. Since it is started by the web server, one cannot easily attach a
debugger to it. About the only thing that one can check:

/ tmp / archserver . log

Per default, the archive data server will append to the archserver.log file when-
ever run. As a result of a ’get values’ request, it will log the request and some
basic result information:

−−−− ArchiveServer Star ted −−−−
a rch i ve r . ge t va lues
how=3 , count=10
get channe l da ta
S t a r t : 03/23/2004 10:47:46.000000000
End : 03/23/2004 10:50:57.000000000
Method : Plo t−Binning , 1 9 . 1 sec bins
Open index , key 1 = ’ . . / DemoData / index ’
Handl ing ’ f r ed ’
40 values
Handl ing ’ j ane t ’
40 values
ArchiveServer ran 0.00754285 seconds

In case of problems, one can check if the data server received the correct
request. On the machine where the data server is running, one can then try to
reproduce the request with the command-line ArchiveExport tool.

To disable this data server log file, look for ’LOGFILE’ in the data server
sources.

9.4 Back in time?

The archiver relies on the world going forward in time. When retrieving sam-
ples from an archive, we expect the time stamps to be monotonic and non-
decreasing. Time stamps going back in time break the lookup mechanism.

CHAPTER 9. COMMON ERRORS AND QUESTIONS 98

Data files with non-monotonic time stamps are useless. Unfortunately, the
clocks of IOCs or other computers running CA servers can be mis-configured.
The ArchiveEngine attempts to catch some of these problems, but all it can do
is drop the affected samples, there is no recipe for correcting the time stamps.

Bottom line: You need to have the clocks of all CA servers properly config-
ured (also see page 3). There are other reasons for back-in-time warnings that
have no good solution:

• When a channel disconnects or when the ArchiveEngine is shut down,
the engine will add “Disconnected” or “Archive Off” values to the archive.
Those values will carry the current value of the host’s clock, the current
time stamp of the computer that is running the engine. The host’s clock
is rarely perfectly synchronized with the IOC’s clocks, so if we had just
received a sample from the IOC and the host’s clock is only a little late,
we’ll get a “back in time” warning.

To resolve this, the engine will tweak the time of the “Disconnected” or
“Archive Off” values so that they’re stamped just after the last sample in
the archive.

• When a channel gets disabled, it really gets disabled because another
channel in its group, one that was configured as “disabling”, turned true
and thus disabled the whole group. The engine writes a “Disabled” value
for each disabled channel, and as a time stamp it uses the time stamp
of the channel that caused the disable. This will later help you to see
exactly when channels were disabled and why because the disabling and
the disabled channels will all have the same time stamp.

A problem arises especially when the disabling channel is from a different
IOC. Assume we just received samples for several channels and added
them to the archive, and then some split seconds later the value of the
disabling channel arrives, delayed by the network. That disabling time
stamp might be a little older than the stamps of the values that we already
wrote, so the attempt to add a “Disabled” value results in back-in-time
warnings (which again get resolved by hacking the time stamps).

• Some channels seldom change. Examples include “Setpoint” channels
which are only modified by operator input. They might stay the same for
days or weeks. When an ArchiveEngine stops, it will add an “Archive Off”
event. When it is then re-started, it will receive the current value of a
channel, which might older than the “Archive Off” event. So the current
value causes a back-in-time situation, again resolved by using the last
time stamp in the archive instead of the original stamp of the sample.

In summary, most back-in-time warnings can be ignored as long as the clocks
of the hosts and IOCs are reasonably in sync.

CHAPTER 9. COMMON ERRORS AND QUESTIONS 99

9.5 Found an existing lock file ’archive active.lck’

When the ArchiveEngine is started, it creates a lock file in the current directory.
The lock file is an ordinary text file that contains the start time when the engine
was launched. When the engine stops, it removes the file.

The idea here is to prevent more than one archive engine to run in the same
directory, writing to the same index and data files and thus creating garbage
data: Whenever the archive engine sees a lock file, it refuses to run with the
above error message.

Under normal circumstances, one should not find such lock files left behind
after the engine shuts down cleanly. The presence of a lock file indicates two
possible problems:

a) There is in fact already an archive engine running in this directory, so you
cannot start another one.

b) The previous engine crashed, it was stopped without opportunity to close
the data files and remove the lock file. It might be OK to simply remove
the lock file and try again, but since the crash could have damaged the
data files, it is advisable to back them up and run a test before removing
the lock file and starting another engine.

9.6 Crashes of the ArchiveEngine, ...

Though some care was taken in testing the ArchiveEngine, several problems
will remain. Before you go all the way to implement a better if not perfect
ArchiveEngine or other piece of the ChannelArchiver yourself, you might want
to see if you can reproduce the crash and aid in debugging it.

Under Linux, this usually means: Allow the generation of “core” files and
investigate them. With recent Linux distributions, add “set ulimit -c unlimited”
to your login-script. When the ArchiveEngine crashes, it should now generate
a core dump, often called “core.<PID>”, using the process ID of the crashed
process. Then use “gdb” to locate the area of code that caused the crash:

cd / where / the / core / f i l e / i s
gdb / f u l l / path / to / ArchiveEngine core .12345
Generate a stack t race
bt
You should see a stack t race lead ing up
to the crash , something l i k e
0 w r i t e (. . . .)
1 p r i n t f (. . . .)
2 MsgLogger (. .)
3 ArchiveChannel : : handle va lue (. . .
4 . . .

CHAPTER 9. COMMON ERRORS AND QUESTIONS 100

Now you can s e l e c t some stack frames and see
what i s happening i n there
frame 3
l i s t
. . . shows the code i n
ArchiveChannel : : handle va lue (. .
t h a t leads up to the crash
q u i t

Please email the result so that we can try to eliminate the problem.

9.7 Cannot create a new data file within file size
limit

You specified a rather small file size limit (file size option in the ArchiveEngine
configuration), and the currently required buffer size for a single channel al-
ready exceeds that file size limit. The Engine will actually go ahead and create
a bigger file in the hope that this avoids data loss.

One example that could cause this: You try to archive array channels, where
each individual sample is already quite big, and picked a tiny file size.

9.8 Found an existing ’indextool active.lck’ lock
file

When an ArchiveIndexTool is started, it creates a lock file similar to the Archive-
Engine, in the hope of preventing more than one Index Tool from modifying a
master index at the same time. See preceding description of archiver active.lck
file.

9.9 What is a “regular expression”?

See a book on perl or the manual page for “grep” for details. The following table
compares the regular expression syntax with the simpler file name wildcards.
Most regular expressions don’t have a wildcard equivalent.

CHAPTER 9. COMMON ERRORS AND QUESTIONS 101

Reg. Exp. Wildcard Matches...
. ? any single character
.* * any string with 0 or more characters
.+ any string with 1 or more characters
^ start of string
$ end of string
[aA] ’a’ or ’A’
[0-9] any single digit
[0-9]+ ’0’ or ’1234’ or ...
^abc$ abc ’abc’
b *b* ’abc’ or ’bbb’ or ’xby’ or ...

9.10 What about using NFS?

For the network data server, it’s probably OK to place some of the actual data
on volumes that are NFS-mounted and not local to the data server. For the
archive engine, use of NFS is discouraged.

For one, the performance of NFS is usually by orders of magnitude below
the performance of locally mounted disk drivers. In addition, NFS mounted
disk drives can always have unexpected errors as a result of network delays or
outages. The API for writing files, that means the read, write, and seek calls
offered by the operating system, does not offer a clear indication if an error was
a disk error or a network error, because NFS was specifically designed to look
like a local file system, which it’s clearly not. So the detection of NFS errors is
difficult. And even if the engine wanted to handle those NFS errors which are to
be expected, should it simply stop for 10 minutes, then try again? What if such
an error happens in the middle of a write cycle, where partial data was written,
and the archive files are in an inconsistent state? So as long as these issues
are not properly addressed, the use of NFS with archive engines is strongly
discouraged.

Chapter 10

Legacy

The main difference between the current version of the Channel Archiver toolset
and previous versions are:

• EPICS Base: Current toolset requires R3.14.4 or later.

• Index: Current toolset uses index files, previous toolset used Directory
files.

• Configurations: All configuration files are based on XML, while they used
to be generic ASCII files.

10.1 Directory Files

In case you have existing archives based on Directory files, you can use the
ArchiveDataTool to create an index file for each existing directory file and that
way migrate to the new toolset. The ArchiveDataTool can also create Directory
files from index files, in case you need to use an older tool to investigate data
in new archives.

10.2 ArchiveManager

The ArchiveManager command line tool for managing archives that use the
older Directory files is still available. It does not work with the new index files.
After migrating the data to the new index format, ArchiveDataTool replaces the
ArchiverManager. You can use the ArchiveDataTool to create index files for
existing directory files.

102

CHAPTER 10. LEGACY 103

10.3 CAManager, CAbgManager

The ArchiveDaemon offers the basic functionality of the CAbgManager: It mon-
itors, starts and restarts ArchiveEngines and offers a web page for status infor-
mation. There is no graphical configuration tool comparable to the CAManager,
you have to create the XML configuration file for the ArchiveDaemon by hand.

10.4 Archive Engine ASCII Configurations

The ChannelArchiver/Engine directory contains ConvertEngineConfig.pl, a perl
script that attempts to convert old-style ASCII configuration files for the previous
ArchiveEngine into the new XML files:

USAGE:
ConvertEngineConfig [op t ions] ASCII−con f i g {ASCII−con f i g }

Options :
−d <DTD> : Spec i fy DTD
−o < f i lename > : Set output f i l e name

This t o o l reads the ASCII c o n f i g u r a t i o n f i l e
f o r an Engine and conver ts i t i n t o the XML
con f i g f i l e .

One can use e i t h e r one ASCII con f i g f i l e
(w i th ! group e n t r i e s) or supply a l i s t o f
ASCII f i l e s , where each one w i l l then de f ine
a group .

Some sites might actually prefer to use the ASCII configuration files and con-
vert them to the XML format with this tool, so here is a brief description of the
ASCII format.

Each ASCII file defines a group of channels.

• “# Comment”
Lines that start with ’#’ are ignored. As are empty lines.

• “!write period <seconds>”
Configures the write period parameter. Most of the global engine param-
eters described in section 3.1 are allowed via the format “!<parameter>
<value>”.

Note that these are global engine parameters. The XML format makes
this fact somewhat obvious by listing them once in the header of the con-
figuration. In the ASCII format, you can specify them on any line in any
configuration file that is loaded by the engine. The effective value that

CHAPTER 10. LEGACY 104

will be used by the engine for all channels is the value found last, i.e.
subsequent “!...” parameters replace previous definitions.

• “!group <file-name>”
Read another group file. To use this, you could create one “main” config-
uration file that contains only “!group ...” lines. Unfortunately, it used to be
no syntax error to have a “!group ...” inside a file which was itself included
via “!group ...”. While that might suggest the possibility of creating nested
groups, it does not work that way. Each file creates a group, named af-
ter the filename, and the engine maintains only one flat list of groups, no
sub-groups.

Preferably, do not use the “!group ...” command at all. Simply create one
ASCII file per group, and list all the group files that you want one engine
to handle on the ConvertEngineConfig command line.

• “<channel> <period>”
Selects scanned sampling of the given channel.

• “<channel> <period> Monitor”
Selects monitored sampling of the given channel.

• “<channel> <period> Monitor Disable”
Selects monitored sampling of the given channel; channel disables its
group..

Chapter 11

Changes

This chapter describes the version numbers and changes since the beginning
of the R3.14 port.

• 08/29/2006 — Version 2.9.2:
Suppress initial ’back in time’ messages.

The engine writes an initial sample with the ’host’ time. That’s good for
channels that change slowly, since their last time stamp might be way
old, even before the last ’Archive Off’ indicator. The host stamp asserts
that we have one initial sample in the archive. On channels that change
quickly, then arrive with a little network delay, we usually soon receive a
sample that’s stamped just before that last host-stamped sample, which
resulted in a few initial ’back in time’ warnings. Now the message log
throttle for these messages gets fired with the first host-stamped entry,
so messages are suppressed for about one hour.

• 08/14/2006 — Version 2.9.1:
John Sinclair noticed that the engine fails to store certain changes that
affect only the channel’s status and severity. The bug was inside the
RawValue::hasSameValue() routine, it omitted a status and severity com-
parison. The error has been around for quite some time, so many thanks
go to John for finally finding this.

• 07/10/2006 — Version 2.9:
In short:

– Very neat index recovery tool written by Nobory Yamamoto.
– Minor bugfixes to ExampleSetup.
– Major refactoring of the ArchiveEngine code.

During restarts, ArchiveDaemon.pl waits for an engine that was stopped
to remove its lock file before starting a new one.

Visible changes to the ArchiveEngine:

105

CHAPTER 11. CHANGES 106

– Engine HTTPD displays “Idle Time” on its main page.
– The “disabling” mechanism now works better right at the start, while

all the channels get connected in an unpredictable order. Before,
the engine would like to log all disabled channels as DISABLED,
but couldn’t for those which were not yet connected, resulting in the
“Cannot add event...” warning and no indication in the data as to
why there is no data.

– ArchiveEngine uses about 2%-4% more CPU and memory.

Internally, the class layout has been reorganized, unit tests have been
added, and everything was tested extensively, both with valgrind and pu-
rify, under R3.14.8.2, resolving some bugs in the CA client library.

Why? The class layout looked OK from a distance; there was an En-
gine, Group, ArchiveChannel, SampleMechanism, the latter derived into
SampleMechanismMonitor etc. But while the SampleMechanism was
supposed to handle the scanning, the ArchiveChannel held the Circu-
lar buffer into which the samples are placed, and the Engine handled the
ChannelAccess ’flush’ required for a ’get’. So there were several messy
interactions, which made it impossible to test and debug for example a
SampleMechanism as a Unit outside of the complete Engine.

In the rework, more classes were added ’below’ the SampleMechanism:
ProcessVariable, ProcessVariableFilter, ProcessVariableContext, and ’Lis-
tener’ interfaces for these and the existing classes. This way, the Process-
Variable can be tested without the Engine, the sample mechanisms can
be tested with test data, and the rather confusing code inside the sample
mechanisms has mostly been replaced with a ’pipe’ of ProcessVariable-
Filter classes, which again can be tested individually.

Semaphores use an “OrderedMutex” wrapper which helps to detect dead-
locks. It also slows the engine down, because each ’lock’ and ’unlock’
now locates the mutex with a linear search. Compared to the engine’s
main impact of disk-I/O, that CPU load seemed neglegible, so this error
checking feature is per default enabled.

NOTE: When running under Fedora Core 2 (Linux kernel 2.6.5, gcc 3.3.3),
the ArchiveEngine leaked memory whenever its HTTPD was accessed.
The memory leak was visible in the “top” command, and in fact the en-
gine would crash after some time with out-of-memory messages from
pthread create.

Interestingly, “valgrind” did not indicate a memory leak on that same ar-
chitecture. Furthermore, I could also not detect a memory leak on Red-
Hat WS 4 nor Mac OS X, so I assume this was a freak behavior for only
Fedora 2, some combination of its compiler and runtime library.

Also switched to using Eclipse as the IDE. Doesn’t nearly work as nicely
for C++ as it does for Java, but still better than “vi”. Basic setup notes
(please ignore if you don’t plan to work on the sources):

CHAPTER 11. CHANGES 107

– Unpack ChannelArchiver sources as usual.

– Open Eclipse, use the directory “extensions/src” as a workspace
directory.

– Create a new Standard C++ Makefile Project, using “ChannelArchiver”
as the name. It will parse the existing sources, but with a few indexer
errors.

– In “Project/Properties/C/C++ Include Path and Symbols”, select Chan-
nelArchiver, “Add Include .. from Workspace”, and add Tools, Stor-
age, LibIO, XML-RPC, Engine.

• 03/27/2006 — Version 2.8.1:
Fix: The nanosecond check could cause a crash when receiving CA call-
back for ’disconnected’ values.

• 03/24/2006 — Version 2.8.0:
Possibly the most visible change is in the ExampleSetup. Before, the
“ArchiveDaemon” would run engines and perform indexing. The indexing
has been moved into a different collection of scripts, meant to run on
a “serving” computer, while the “sampling” machine runs only daemons
and engines. Check the “Example Setup” in chapter 6 for details. It is
probably not fully done, but has been running at the SNS for about two
weeks, recently collecing 4 to 5GB of data per day, and serving a total of
about 900GB of data for 2005 and 2006.

The code has been changed back to using C++ exceptions, as it did in
the versions for EPICS base R3.13.

In this conversion process, many unit-tests have been added and checked
under valgrind.

When compiled with R3.14.8, the more rigorous checking of time stamps
in EPICS base would result in ’assert’-aborts when the nanosecond-
portion of time stamps was not normalized. This happened quite often
at the SNS because of ongoing timing system driver development and
last not least a bug in the Java data viewer. Guards have been added
to the archiver code to hopefully avoid all such aborts. The Engine will
ignore samples with problematic nanoseconds, while the retrieval tools
will replace those nanoseconds with 0.

The retrieval code used by ArchiveExport and the ArchiveDataServer can
now follow several soft links. So if /a/link is a soft link to /b/link which in
turn points to /c/index which refers to data in “20060110”, the tools will
now use the data from “/c/20060110” and not “/a/20060110”.

Some of the messages logged by the engine are now throttled to reduce
the log file size.

• 12/13/2005 — Version 2.7.0:
Error reporting: When a command-line tool failed, one could see a rather

CHAPTER 11. CHANGES 108

specific error message like ”Cannot open DataFile 20040323”. It also
ended up in the log file of the network data server, but was not reported
well via the XML-RPC protocol.

Now an XML-RPC fault with the more specific error message is returned
when an index or data file access fails. A request for a channel that is not
found at all is now also considered an error by the network data server.
When there is simply no data for the requested time, the meta information
is returned without any actual samples, as before.

• 10/31/2005 — Version 2.6.0:
The toolset now compiles and runs on a 64 bit Linux system, specifically
RedHat Enterprise Linux WS release 4 with gcc 3.4.4.

The goal here was to keep binary compatibility, so that index and data
files can be moved from 32 bit computers to 64 bit machines and back.
This means that the 32 bit limititations on file sizes still apply, even when
running on a 64 bit computer.

Several new self-tests were added to check the following on the 64 bit
system as well as 32 bit Linux and Mac OS X 10.3:

– All compiles with the 64 bit compiler, no warnings on the test system.

– ’Tools’ library self-test passes.

– ’Storage’ library self-test passes.

– ArchiveExport can dump demo data, matching results on all archi-
tectures.

– ArchiveDataTool can copy demo data, matching results on all archi-
tectures.

– DataServer runs from within shell script that simulates a CGI envi-
ronment.

– ArchiveEngine runs, HTTPD responds, collected data passes sim-
ple tests.

• 09/21/2005 — Version 2.5.0:
New engine URL

.... castatus?/tmp/x

will cause the engine to dump the ca client status() output into the given
file the next time it writes to the disk.

• 08/29/2005 — Version 2.4.0:
LinearReader rounds start time, because otherwise a request for multiple
channels, all using linear interpolation, could loose lockstep, and when
the result is put in a spreadsheet form, there are many more lines than
expected from the per-channel view of the data, which confused the data
viewer.

CHAPTER 11. CHANGES 109

XML-RPC, being XML, sends all numbers as strings. Unfortunately, XML-
RPC also insists in the simple ’dot’ notation and prohibits exponential
notation. A number like 1e-300 would turn into ”0.0000000...” with 300
zeroes, which is too long for the internal print buffer of the xml-rpc C
library. Since such huge and tiny numbers can’t be transferred, they are
replaced by 0 with stat/sevr UDF/INVALID.

The cut-off point is somewhat arbitrary. The XML-RPC library uses an
internal print buffer of about 120 characters. Since PVs are usually scaled
to be human-readable, with only vacuum readings using exp. notation for
data like ”1e-8 Torr”, exponents of +-50 seemed reasonable.

• 07/18/2005 — Version 2.3.0:
Added ArchiveDataServerStandalone.

• 05/31/2005 — Version 2.2.1:
At the SNS with EPICS R3.14.7, there is an instance of an engine crash-
ing in ipAddrToAsciiEnginePrivate.cpp in the transactionComplete call-
back while pCurrent was 0, which shouldn’t happen:

if (!this->pCurrent)
continue;

{
epicsGuardRelease < epicsMutex > unguard (guard);
this->pCurrent->pCB->transactionComplete (this->nameTmp);

}

In the process of debugging it, an uninitialized use of the HTTPD run
duration variable and a scanlist memory leak on exit have been found by
’valgrind’. None of this should matter in the real world, but I prefer as little
valgrind complaints as possible. Remaining memory leaks on exit are in
the EPICS base code.

• 03/31/2005 — Version 2.2.0:
Added a ”Write Duration” status to the main page of the Engine HTTPD. It
is a running average of the time spent writing to the disk. ExampleSetup
includes a new script, ”engine write durations.pl”, which queries all en-
gines for their write duration. The intent is to get an idea of how much
time is spent doing disk I/O, and to get a grasp on which engine is doing
worst.

• 03/21/2005 — Version 2.1.9:
The ArchiveDaemon.pl script now creates a soft-link ”current index” in
the engine subdirectories, pointing to the currently used index. The idea
is to have a common name for the active index in case the multi-index is
broken or only updated slowly.

The next issue was that the relation of an index to its data files must not
change. If an index is in the same directory as its data files, OK, but this

CHAPTER 11. CHANGES 110

soft link was actually in a different location, so in order to still find the data
files, the retrieval now follows sym-links to index files on level deep (not
following arbitrary chains of soft links).

• 02/01/2005 — Version 2.1.8:
At the SNS, one ArchiveEngine running a configuration with ’disabling’
channels tended to hang up just after a channel ’disabled’ a group. While
I was never able to capture this in the debugger or otherwise reproduce
it, I did find a violation of the lock order in the code related to ’disabling’ a
group, so this might have been the reason.

• 10/26/2004 — Version 2.1.7:
In monitored mode, engine will always try to add two initial samples: One
with the original time stamp, one with the host time stamp. This solves
the restart problem:

Assume a setpoint PV is 3 days old. When we start an engine today, it’ll
write that 3-day old value. When we then stop and restart tomorrow in
a new directory, a ”Disconnected” value will be added before shutdown
and then the same happens in the new directory. When now looking at
both days, you would get the 3-day old value, a disconnect/off value and
nothing else.

With this update, you will see one value with the host’s time stamp each
day in addition to the original time stamp, so even when viewed via a
master-index, one sample per day should be visible.

ArchiveDaemon.pl no longer complains about an undefined ”opt i”, thanks
to Paul Sichta for pointing this out.

• 09/07/2004 — Version 2.1.6:
Added Enable/Disable code to ArchiveDaemon. “ListIndex” bug fixes
(sub-index was closed even though we’re still accessing channels in the
index).

• 08/26/2004 — Version 2.1.5:
Fixed bug in the engine code: PVs which never change were never writ-
ten when sampling with period ¡ get threshold.

Working on a “ListIndex”, allowing the retrieval tools to use an indexconfig.dtd-
type list of sub-archives, querying them one by one. The result is slower
than using a “real” index, but much easier to setup and maintain.

• 07/26/2004 — Version 2.1.4:
Bug in DataReader that affected all the retrieval code: The “find” uses the
start time in an at-or-before sense, which is intentional for direct calls to
find(). This happened, too, when it was used internally for the purpose
of switching to a new data block ref’ed by a (master) index. In that case,
however, the start time given by the index must be observed in an at-or-
after sense, otherwise we can go back in time.

CHAPTER 11. CHANGES 111

Added the weekly option to the ArchiveDaemon. Not detailed in manual
until we get some milage on it.

• 07/23/2004 — Version 2.1.3:
Index update had a flaw: When an engine stops, that last value received
via CA might have a time stamp of 10:00 and then we stop at 11:00, so
the last stored value is the “off” value at 11:00. When now a new engine
starts, the first data is still 10:00, and that data is hidden under the last
data block of the previous engine (...11:00). When then the new engine
added more data, eventually beyond 11:00, that new data stayed hidden
unless one rebuilt the master index from scratch. Hopefully fixed this.

• 06/30/2004 — Version 2.1.2:
Added tags and channel names to the Data files, so that in the future
one could try to write a rescue tool. Patch for XML-RPC C/C++ lib. al-
lows small numbers. DataTools’ “index2dir” option now actually works.
Matlab/Octave glue code can handle an array channel (when requesting
a single channel, raw data). ArchiveDaemon generates indexupdate.xml
for each re-index run; “-u” option.

When retrieval uses a ”master” index and reaches its end, it will try to
continue by following links of the last data block in the sub-archive. This
will allow us to get closer to ”now” between updates of the master index.
The first attempt to implement this failed because of errors in the handling
of the path names (master index has path to data files, but when we follow
the links inside the sub-archive’s data file, those are relative to where the
sub-archive resides). Still not fully tested.

• 04/01/2004 — Version 2.1.1:
Many little updates have been checked into CVS while the tools reported
”2.1.1”. In the end, the engine supported sampling, monitoring and sampling-
based-on-monitors, and ran without known problems under valgrind. The
XML-RPC Data Server seemed to work fine, supporting raw data, plot-
binning, spreadsheets, averaged and linear interpolation. Java Archive
client is useable. Switched index file to CAI2, where the name hash in-
cludes a filename for the RTree. For now it’s left empty, but the file format
now allows for a further extension where certain RTrees are in separate
files as soon as the index file gets too big.

• 01/27/2004 — Version 2.1.0:
Uses new RTree, initial XML-RPC Data Server, XML configuration files.

• 09/05/2003 — Version 2.0.1:
Some bug fixes: The ”scanned” operation didn’t work, and when all was
monitored, the empty scan lists lead to a high CPU load. Still not perfect,
the ChannelInfo code should be split into really monitored, scanned using
CA monitor and scanned using CA get.

CHAPTER 11. CHANGES 112

• 04/04/2003 — Version 2.0:
Starting to work on R3.14 port.

Chapter 12

Index, Bibliography

113

Index

’#N/A’, 10, 96
/arch, 58
/arch/scripts, 57

Apache, 33
archive active.lck, 66, 99
archiveconfig.xml, 57
ArchiveDaemon, 60
ArchiveDataClient.pl, 43
ArchiveDataServer, 33
ArchiveDataTool, 87
ArchiveEngine, 16
ArchiveExport, 30
ArchiveIndexTool, 53
ArchiveManager, 102
archserver.log, 97
ASCII configuration, 103
Averaging, 12

back in time, 97
binary index, 52
broken master index, 74
buffer reserve tag, 19

CA, 1
CAbgManager, 103
CAManager, 60, 103
CGI, 33
channel tag, 21
ChannelAccess, 1
ChannelAccess servers, 4
Combine Sub-Archives, 89
config tag, 64
convert archiveconfig to xml.pl, 57
ConvertEngineConfig.pl, 103
cron, 68, 72
current index, 66, 69, 71

current index tag, 71

daemon tag, 58
Daemon Web Server, 66
daily tag, 64
damaged or lost index file, 87
data buffers, 90
Data File Repair, 89
data file repair, 87, 90
data management, 87
Data Server, 32
data sources, 4
dataserver tag, 64
daylight saving time, 9
Delete Channels, Data, 88
desc tag, 63
disable tag, 22
DISABLED.txt, 67
disconnect tag, 20
DST, 9

engine tag, 64
Engine Web Server, 26
engine write durations.pl, 68
EPICS, 1
EPICS Time, 8
EPICS TS MIN WEST, 8
epoch, 8
error messages, 96
Expat, 79

file size limit, 100
file size tag, 19
Filling, 11

get threshold tag, 19
global option, 19

114

INDEX 115

Greenwich Mean Time, 8
group tag, 20

host name, 59
host tag, 72
hourly tag, 64

ignored future tag, 19
Index and Data File Repair, 87
index tag, 71
indextool active.lck, 100
IOC, 4

Linear Interpolation, 12
list index, 52
local host, 59
Local Time, 8
localhost, 60
lock file, 99
lynx, 66

mailbox, 72
mailbox tag, 58, 63
make archive infofile.pl, 68
make archive web.pl, 68
make compress script.pl, 89
Master Index, 82
Master Indices, 53
max repeat count tag, 20
md5 checksum, 72
memory leak, 106
meta information, 5
monitor tag, 21

name tag, 21
NFS, 101

onlineconfig.xml, 27

PCAS, 4
period tag, 21
port tag, 63
postal, 68

raw spreadsheet format, 10
Re-build Indices, 74
records, 4

Reduce the Data Size, 89
regular expression, 41, 59, 100
Remove Channels, Data, 74
repair, 87
restart tag, 64
retrieval times, 89
root tag, 58
run tag, 63
run tags, 59
run-daemon.sh, 65

sampling options, 4
scan tag, 21
secure-copy (scp), 72
send mailbox.pl, 72
serverconfig tag, 58
serverconfig.xml, 35
show engines.pl, 68
show restarts.pl, 68
show sizes.pl, 68
Spallation Neutron Source (SNS), 56
Staircase Interpolation, 11
start daemons.pl, 65
stop-daemon.sh, 65
stop daemons.pl, 65
stop engine.sh, 66
Sub-Archive, 82
sub-archive, 59
Sub-Archive Priorities, 82
Sub-Archives, 68

time stamps, 3
timed tag, 64

update archive tree, 59
update indices.pl, 72
update server.pl, 72
USPS, 68
UTC, 8

view-daemon.sh, 66

weekly tag, 64
write period tag, 19

Xerces, 78
XML-RPC Protocol, 38
XML-RPC Setup, 76

Bibliography

[1] EPICS Web Page, http://www.aps.anl.gov/epics/. 1

[2] J. O. Hill: Channel Access: A Software Bus for the LAACS, ICALEPCS
1989, Vancouver. 1

[3] K. U. Kasemir, L. R. Dalesio: Overview of the Experimental Physics and
Industrial Control System (EPICS) Channel Archiver, Internat. Conf. on
Accel. and Large Experim. Phys. Control Systems (ICALEPCS) 2001, San
Jose, CA.

[4] Antonin Guttman: R-Trees: A Dynamic Index Structure for Spatial Search-
ing, Proc. 1984 ACM-SIGMOD Conference on Management of Data
(1985), 47-57. 83

[5] Marty Kraimer et al: IOC Application Developer’s Guide R3.14.4,
http://www.aps.anl.gov/epics/.

[6] Web Page of the DarwinPorts Project, providing help with porting various
open-source packages to Mac OS X, http://darwinports.opendarwin.org.
77, 78

116

http://www.aps.anl.gov/epics/
http://www.aps.anl.gov/epics/
http://darwinports.opendarwin.org

	Overview
	Audience
	Channel Archiver Toolset

	Background
	What is a Channel?
	Data Sources
	Sampling Options
	Time Stamps
	Sensible Sampling
	Times: EPICS, Local, Greenwich, Daylight Saving
	Time Stamp Correlation
	``Raw'' Data
	``Before or at'' Interpretation of Start Times
	Spreadsheet Generation
	Averaging, Linear Interpolation
	Plot-Binning

	ArchiveEngine
	Configuration
	write_period tag
	get_threshold tag
	file_size tag
	ignored_future tag
	buffer_reserve tag
	max_repeat_count tag
	disconnect tag
	group tag
	channel tag

	Example for Sampling a Channel
	Starting and Stopping
	Starting
	``-log'' Option
	``-description'' Option
	``-port'' Option
	``-nocfg'' Option
	The ``archive_active.lck'' File
	More than one ArchiveEngine
	Stopping

	Engine Web Server
	Threads

	Data Retrieval
	Java Archive Client
	ArchiveExport
	Data Server
	Installation
	Configuration
	Testing, Debugging
	Standalone Data Server
	Running ArchiveDataServerStandalone

	XML-RPC Protocol
	archiver.info
	archiver.archives
	archiver.names
	archiver.values
	Note about Tiny Numbers and Precision

	Perl Client
	``Storage'' Library
	StripTool
	Matlab

	Indices
	Index Tool
	make_indexconfig.pl
	Internals

	Example Setup
	Setup, archiveconfig.xml
	Sampling Computer
	Configuration
	update_archive_tree.pl
	ArchiveDaemon
	Status Information

	Sub-Archives
	Serving Computer
	Configuration
	send_mailbox.pl
	update_server.pl
	update_indices.pl

	Common Tasks
	Modify Engine's Request Files
	Add Engine or Daemon
	I want to stop a Daemon
	A Daemon isn't running
	An Engine isn't running
	Re-build Indices
	Remove Channels, Data
	More Data Management

	Setup, Installation
	Compilation
	XML-RPC
	Xerces XML Library
	Expat
	XML-Simple
	Frontier

	Installation
	DTD Files

	Data Format Details
	Binary Index Files, RTree
	Implementation Details

	Data Files
	Implementation Details

	Index and Data File Repair
	Data Tool
	Delete Channels, Data
	Combine Sub-Archives
	Reduce the Data Size, Data File Repair

	Statistics
	Write Performance
	Index Performance
	Impact of Data Management on Performance
	Binary Index compared to list index
	Retrieval Performance

	Common Errors and Questions
	Why is there no data in my archive?
	Why do I get #N/A, why are there missing values in my spreadsheet?
	Why do I not get what I think I should get from the network data server?
	Back in time?
	Found an existing lock file 'archive_active.lck'
	Crashes of the ArchiveEngine, ...
	Cannot create a new data file within file size limit
	Found an existing 'indextool_active.lck' lock file
	What is a ``regular expression''?
	What about using NFS?

	Legacy
	Directory Files
	ArchiveManager
	CAManager, CAbgManager
	Archive Engine ASCII Configurations

	Changes
	Index, Bibliography

