

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO

INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES

This project is supported by the Foundation for Polish Science – MPD program, co-financed by the European Union within the European Regional Development Fund

Gigabit Ethernet status and data transport on TRBv3

Grzegorz Korcyl Applied Computer Science PhD Studies IPPT PAN/UJ, Kraków International PhD Studies in Applied Nuclear Physics and Innovative Technologies UJ, Kraków PANDA DAQ Workshop Grunberg, 29 April 2011

Outline

1. Gigabit Ethernet in HADES

- 2. TrbNet
- 3. TRBv3
- 4. TrbNet-Over-GbE
- 5. Bi-Directional Ethernet
- 6. Summary

FNP

UNIA EUROPEJSKA

Gigabit Ethernet in HADES

- UDP over GbE used to send collected data to Event Builders
- Implemented on concentrator boards (HUBv2) and detector specific (Shower, MDC)

Gigabit Ethernet in HADES

Layered structure

- GbE Buffer HADES specific interface and data buffer
- Packet, Frame Constructors UDP packets construction
- Frame Transmitter, IPCores Gigabit Ethernet, media access

Implemented on Lattice ECP2M FPGAs

- Uses 2 IPCores: Tri-Speed MAC and SGMII/GBE PCS
- Platform independent upper layer
- Ressource utilization for full entity:
 - 6k LUTs (6% for ECP2M100)
 - ~150kB RAM (26% for ECP2M100) (without GbE Buffer ~80kB)

Performance

- Full entity maximum throughput 50MBps
- UDP construction only throughput 98MBps
- For full entity, the speed can be augmented in trade of RAM consumption
- No packet/frame loss or rejection due to corrupted construction

Gigabit Ethernet in HADES

HADES specific interface (GbE Buffer)

- Construction of Hades Transport Unit Queue
 - Queue consists of several subevents
 - Subevent can contain data from several endpoints
 - Uneven subevent size requires buffering
 - Drop in performance
- Event builder selection mechanism

UDP construction

- Packet sizes up to 64kB
- Packet fragmentation into Ethernet frames of up to 9kB (Jumbo frames)
- Checksum calculation
- No need for ARP in HADES case (only uplink)
- All parameters are register-configurable

NOWACYJNA

PODARKA

PÓINOŚCI

Media access

- Realized by IPCores
- Autonegotiation
- Link state control
- Conversion to 8b/10b

TrbNet

- 3 logical channels (priority):
 - LVL1 trigger
 - Data transport
 - Slow control
- Endpoint addressing scheme
 - Broadcasts
 - Unicasts
- Media independent
 - Optical links
 - LVDS lines
- Packet retransmisson
- Performance:
 - 75% of network bandwidth
 - for 2Gbps using 8b/10b encoding data rate of 1.2 Gbps

INTERNATIONAL PHD PROJECTS IN APPLIED

FNP

UNIA EUROPEJSKA

E TECHNOLOGIES

TRBv3

- Key features:
 - 5x Lattice ECP3 150
 - 4x for TDC or other purpouse
 - 1x main control
 - > 8x 3.2 Gbps SFP
 - Multiple protocols
 - 4x 208 pin connectors
 - Input lines for TDC-in-FPGA
 - Connectors and power supply to small Addon Boards
 - 1x regular Addon connector

NNOWACYJNA GOSPODARKA

SPÓJNOŚCI

No ETRAX!

TRBv3 with small AddOns to cope with many applications.

UNIA EUROPEJSKA UROPEJSKI FUNDUSZ OJU REGIONALNEGO

INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science – MPD program, co-financed by the European Union within the European Regional Development Fund

FNP

TrbNet Over GbE

- Main idea:
 - No ETRAX on board
 - TrbNet endpoint on each FPGA

Control the board via Ethernet using TrbNet

This project is supported by the Foundation for Polish Science – MPD program, co-financed by the European Union within the European Regional Development Fund

Bi-Directional Ethernet

- Reuse old components: packet/frame construction and transmission, TrbNet interface
- New elements: frame receiver, flow controllers, response constructor(s)
- Still pure VHDL logic (except media access)
- Without GbE Buffer Full featured, full-speed, multiprotocol Ethernet endpoint

FNF

UNIA EUROPEJSKA

Bi-Directional Ethernet

Address assignment

- Empty registers after reboot no access from outside
- Temperature sensor with unique ID on each board (not MAC address)
- TRB DHCP
 - By default no address filtering on endpoints
 - Address mapping table on server
 - 1. Board sends request with its unique ID
 - 2. Server responds with broadcast message containing matching addresses
 - 3. One board accepts
 - 1. Saves the addresses
 - 2. Sets up filtering
 - 4. Others drop the message
- ARP needed for larger systems

Bi-Directional Ethernet

Status

Done:

- Test setup: injection of received frames into output stream
- Most of the connection handling in two directions

Still to develop:

- Addressing mechanism
- Higher level protocols implementations

PÓINOŚCI

ΙΟΨΑΟΥΙΝΑ

ODARKA

FNF

UNIA EUROPEJSKA

Summary

- UDP and Gigabit Ethernet implementation successfully used in HADES
- TRBv3 new possibilities and new challenges
- TrbNet-Over-GbE forces the development of Bi-Directional Ethernet implementation
- Project in development first results are present

