DAQ Status and Upgrades

Outline

- Status
 - Preparations for Beamtime May 2006
 - Things to do

Upgrades

- Why?
- EU-Contract
- TRB, Readout and IPU-boards
- Trigger Distribution

Status DAQ / Trigger

- No known new problems since Sep05
- Changes / Improvements
 - new VME-CPUs in all subsystems but RICH
 - 3-4 times faster readout
 - no big effect for light systems expected (more downscaled data)
 - TRB readout of Hodoscope in beam-transfer-line integrated into DAQ
 - stably running at: LVL1: 30 kHz
 LVL2: 10 kHz (with data!)

Status DAQ / Trigger II

• Expected rates for beamtime:

	max LVL1	max LVL2	LVL2 trigger downscaling factor
pulser rate	17 kHz	4-5 kHz	10-20
in beam rate	8-6 kHz	1-3 kHz	10-20

- Stability issues:
 - Last experiment with light system: aug04
 - higher LVL1 rates
 - TOF ?
 - RICH -> IPU -> MU link ?
 - no signs of new problems while testing with pulser
 - not 100% realistic, thresholds, data-fluctuations

Status DAQ / Trigger, Things to do!

- Full System integration
 - MDC, new chamber
- DAQ-Runcontrol, DAQ-Monitoring, Online Monitoring (P. Zumbruch): Saturday 9⁰⁰
- Detector-data still ok?
 - RICH thresholds, Shower Thresholds
 - ...
- Cosmic Rays Run: scheduled 24th to 28th of April

 With all detectors set to running condition
- Data has to be checked carefully by sub-detector responsibles as early as possible to have time to react when problems occur.

Upgrades / Why?

- DAQ/Trigger does not perform for heavy systems
 Statistics of our experiments is not good enough
- Rates during last beamtime sep05 Ar+KCl

	max LVL1	max LVL2	LVL2 trigger downscaling factor
beam rate	3-4 kHz	1-2 kHz	around 3

Reasons I:

- Micro-Spill-Structure of beam costs about factor of 2
- The limitation of the LVL1 rate in hardware
- bad LVL2-Trigger reduction value (saturates LVL2)
 - Charged particles from upstream sources in RICH
 - Photon-efficiency of RICH detector, noise
 - RICH-patterns are essential for performance of LVL2 trigger

Upgrades / Why? II

Reasons II:

- Maintainability, operating:
- Aim (quoting Herbert): "3 people have to be able to run a HADES shift!"
 - needs much more stable DAQ-system
 - thresholds of detectors have to be more stable
- We need a scalable system for future extensions

Upgrades / Measures

Consequences / Strategy:

- More bandwidth to mass-storage needed
 - New commercial VME-CPUs (W. Kühn)
- Rebuild custom electronics with available new technology, make it a scalable system
 - (many small and "cheap" boards)
- More powerful and more selective LVL2 trigger is needed
 - Improve on algorithms
 - ideas: Ring fitting instead of ring-matrix?
 - Faster IPU-hardware for more complex algorithms
 - Add new subsystems to LVL2 trigger
 - MDC tracks

List of Projects in DAQ

MU	TOF	Common Readout	MDC	RICH	RPC
Matching Unit Concentrator	Replacement TOF readout- board	Replacement of old VME-CPUs	Higher bandwidth digital readout electronics	New digital readout for lowering electronic noise in the RICH detector	TDC-board with readout
Matching Unit Version 2	more powerful TOF-IPU	Parallel working Eventbuilders	Integration of track information to LVL2 trigger	More powerful IPU for lower fake-rate	IPU for RPC

FP6 DAQ project

Aim: accept 20 kHz primary data rate to ensure measuring rare decays in heavy systems

Who is paying for these projects?

Upgrades / EU

EU-FP6 Construction Contract

- Resistive Plate Chamber / RPC
 - Timing (Time of Flight)
 - correction with amplitude (walk correction)
- Forward Wall
- DAQ-Upgrade
- Pion Hodoscopes

BMBF (Bundesministerium für Bildung und Forschung)

- MDC Readout / Trigger (Frankfurt)
- RICH Readout / Trigger (München)
- LVL2 Compute Node, Trigger Board (Gießen)

Milestones EU-FP6 contract

DAQ-Upgrade / Synergy

Synergy

- One common platform for readout of detector data
- One common way of distributing IPU data downstream to the Matching Unit
- New digital-trigger distribution for scalability

Advantages of this approach

- Saves development time (manpower) and money
- Easier/possible to maintain, debug
 - distributed knowledge
- Shows that we can learn from experience :-) !

DAQ-Upgrade / Synergy II

Is it possible to use one platform?

- Very similar FEE and DAQ/Trigger tasks
 - RPC
 - Forward-Wall
 - Pion-Hodoscope
 - TOF (needs new FEE!)
- Readout/Trigger can be unified
 - MDC (TDCs stay)
 - RICH (FEE stays, will be exchanged later)
 - Shower(?)

Answer: yes!

But what platform? What do we have already?

Requirements/Features for RPC

- Time resolution below 60ps
- Purely digital, ADC information is encoded in Timeover-Threshold
 - No delays required, no ADCs needed, HPTDC-ASIC from CERN
- At the detector, short signal cables
- LVL1 and LVL2 pipes at the FEE
- Readout and data transport on one board, no VME
- Avoid "Low Voltage Power-Supply Nightmare[©]" (high currents over long cables: Ohm's Law, Inductive-effects)
 - 48V DC/DC, telecom standard
- Data Reduction/Feature extraction on the same board
- One fits for many!

TDC/Triggered Readout Board, TRB, Results I^[1]

- Project of a larger team, very complex, timeconsuming
- Concept is accepted and working: RPC Test Nov 05

[1] M. Traxler, D. Gil, M. Kajetanowicz, K. Korcyl, M. Palka, P. Salabura, P. Skott, R. Trebacz: GSI Report 2006

TRB, Results II

TDC-Resolution

- sigma between 2 channels (4 TDCs): 38ps
- no signs of crosstalk on TRB (has to be verified with more careful measurement)

Performance:

- LVL1 readout of 60 TDC-words/event: 35kHz
- LVL2 readout of 60 words/event: 5-6kHz
- LVL2 readout of empty events: 18-19kHz
- all without DMA, no optimization in FPGA
- Missing: Matching Unit Connectivity

06.04.2006

Future/Upgrade: TRB V2

Future/Upgrade: TRB V2

- Additional Features:
 - 2 Gbit optical link for online pattern-recognition data transfer and LVL1 and LVL2 trigger information (not timing)
 - 3 times faster CPU (21€/piece)
 - Large FPGA for online pattern-recognition, zero suppression, IPU functionality
 - DSP: Tiger-Sharc (TOF-algorithm), optional
 - option: remove TDCs, connectors for readout of:
 - MDC, RICH

DAQ/Trigger-Distribution Architecture

Trigger Distribution

- Tree-Structure (point to point) instead of star (bus)
- IPU data and Trigger-Distribution over one optical 2 GBit/s link
 - low delay needed for trigger-decisions and busy
- Protocol worked out and simulated by Ingo Fröhlich
 DAQ-Wikipage
- List of advantages over traditional bus architecture:
 - Point-to-point links
 - scalable
 - galvanic decoupling, works over long distances!
 - higher speed (RICH raw data to new RICH IPU?)
 - at the end cheaper than copper

Summary

Beamtime

- Beamtime may06 still needs preparation
 - support needed from detector experts

Upgrade

- EU-FP6 construction contract "DAQ/Trigger Upgrade" is progressing ahead of schedule
- The other systems (not EU-Upgrade) can/should benefit from the TRB-development
- MDC and RICH DAQ-upgrades as well as Compute-Node for IPUs are planned: application to BMBF
- TOF? TRB or with new VME-CPU-Readout?

• Thank you for your attention!

• Q&A

Compute Node, example given

Compute Node planned by Giessen group

TRB Module

TRB Module and components

- 4*32 channels TDC, HPTDC
- 80 pin twisted pair cable, KEL connector
- Single Chip Computer with Ethernet
- FPGA
- DC/DC 48V, isolated
- Memory

Architecture

