A 16 Channel High Resolution (<11 ps) Time-to-Digital Converter in a Field Programmable Gate Array

Cahit Uğur₁, Eugen Bayer₂, Michael Traxler₂ and Nikolaus Kurz₂

Johannes Gutenberg Universität Helmholtz-Institut Mainz
 GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

- Introduction Motivation
- Background
 - Architectural methods
 - Time interval averaging method
- Implementation of Tapped-Delay Line
 - Architecture of Time-to-Digital Converter
 - Architectural effects of FPGA
 - Wave union launcher
- Measurements
 - Static error & resolution
 - Resource consumption & important parameters
- Conclusion & Outlook

Introduction - Motivation

- Motivation
- Area of application; HADES, PANDA, Daisy, CERN etc.
- Purpose of the project

Introduction - Motivation

[2]

Outline

- Introduction Motivation
- Background
 - Architectural methods
 - Time interval averaging method
- Implementation of Tapped-Delay Line
 - Architecture of Time-to-Digital Converter
 - Architectural effects of FPGA
 - Wave union launcher
- Measurements
 - Static error & resolution
 - Resource consumption & important parameters
- Conclusion & Outlook

Architectural Methods

- Coarse measurement method
- Fine measurement methods
 - Time stretching
 - Double conversion
 - Vernier method
 - Tapped delay line method
- Interpolation methods

[3]

Tapped Delay Line Method

- Composed of a number of delay elements with propagation delay of τ
- Measurement result:

 $T = n.\tau$

- Thermometer code to binary code converter is needed
- Fast conversion time
- Number of delay elements: $N = MR/\tau$

MR: Measurement range

28/09/2011 | Cahit Uğur | 7

[3]

Outline

- Introduction Motivation
- Background
 - Architectural methods
 - Time interval averaging method
- Implementation of Tapped-Delay Line
 - Architecture of Time-to-Digital Converter
 - Architectural effects of FPGA
 - Wave union launcher
- Measurements
 - Static error & resolution
 - Resource consumption & important parameters
- Conclusion & Outlook

Architecture of Time-to-Digital Converter

- LUTs used as delay elements
- Fast carry-chain structure
- Registers exist in the same slice

Lattice ECP2M FPGA Slice Diagram [4]

Architecture of Time-to-Digital Converter

Lattice ECP2M FPGA Slice Diagram, [4] PFU Diagram and Floorplan

Architecture of Time-to-Digital Converter

Bubble Error!!!

- Effect of longer inter-slice routings
- Effect of PFU architecture

- Effect of primary clock line in the FPGA
- Effect of longer inter-slice routings
- Effect of PFU architecture

- Effect of primary clock line in the FPGA
- Effect of longer inter-slice routings
- Effect of PFU architecture

Wave Union Launcher

- More than one delay line is necessary in order to reduce the effect of wide bins
- Wave union launcher_[8] is implemented
- Bin widths & non-linearities are reduced

Wave Union Launcher

Bins: ~240 Mean: ~20 ps Max: ~45 ps

- More virtual bins
- Narrower bins
- Homogeneous bin distribution

Bins: ~520 Mean: ~10 ps Max: ~35 ps

Outline

- Introduction Motivation
- Background
 - Architectural methods
 - Time interval averaging method
- Implementation of Tapped-Delay Line
 - Architecture of Time-to-Digital Converter
 - Architectural effects of FPGA
 - Wave union launcher
- Measurements
 - Static error & resolution
 - Resource consumption & important parameters
- Conclusion & Outlook

Measurement Setup

EXPLODERv1

Statistical Error & Resolution

- Time difference measured between 2 channels
- $\Delta t = (t_{coarse1} t_{coarse2}) (t_{fine1} t_{fine2})$
- RMS measured: 10.34 ps against same clock
- Resolution: 10.34 ps / $\sqrt{2}$ = 7.3 ps
- Effect of 2 transitions:

14.82 ps / 10.34 ps = 1.43 factor

Mean Time Measurements

Stability

Max change 0.15 ps

Max change 2.5 ps

340.000.000 hits

Extra Feature – Trigger Window

•Fiexed signal relative to the trigger.

1MHz Random signal
500 ns post-trigger window

Resource Usage & Important Parameters

Resource (slice)	57% of ~24K slice
Resource (LUT)	40% of ~50K LUTs
# of channels	16
Max bin width	34 ps
Avg. bin width	~10 ps
RMS	10.3 – 12 ps
Max conversion time	45 ns
Dead time	30 ns
Carry chain length	320

Outline

- Introduction Motivation
- Background
 - Architectural methods
 - Time interval averaging method
- Implementation of Tapped-Delay Line
 - Architecture of Time-to-Digital Converter
 - Architectural effects of FPGA
 - Wave union launcher
- Measurements
 - Static error & resolution
 - Resource consumption & important parameters
- Conclusion & Outlook

Conclusion & Outlook

Conclusion

- 16 channels implemented in 50K LUT Lattice FPGA
- ~10 ps RMS is reached with 2 transitions
- Avg. bin width ~10 ps, yielding long delay line
- Very good results with one of the cheapest FPGA.

Outlook

- Higher system clock frequency, 400MHz
- Remove double synchroniser
- Reduce resource consumption
- Implement more channels, 64
- Reduce dead time

TRBv3

- 256 channel on board
- ~10 ps RMS
- FEE, Readout on-board
- Will be used for Hades, PANDA, CBM, etc.
- Per channel cost similar with ASIC-HPTDC from CERN, but 10 times higher resolution!!!

References

- [1] G. Otto, Presse und Kommunikation, GSI Helmholtzzentrum f
 ür Schwerionenforschung GmbH, G.Otto@gsi.de
- [2] http://hades-wiki.gsi.de/pub/DaqSlowControl/TRBPublicationList/TRBv2_pic_22.12.06.jpg
- [3] J. Kalisz, "Review of methods for time interval measurements with picosecond resolution," *Metrologia*, vol. 41, no. 1, pp. 17–32, 2004.
- [4] Lattice Semiconductor Corporation, LatticeECP2/M Family Handbook, March 2009, HB1003 Version 04.3.
- [5] J. Song, Q. An, and S. Liu, "A high-resolution time-to-digital converter implemented in fieldprogrammable-gate-array," *IEEE Transactions on Nuclear Science*, vol. 53, pp. 236–241, February 2006.
- [6] J. Wu and Z. Shi, "The 10-ps wave union tdc: Improving fpga tdc resolution beyond its cell delay," *Nuclear Science Symposium Conference Record, 2008 IEEE*, pp. 3440–3446, 19-25 October 2008.
- [7] E. Bayer, "Tdc zeitmessung mit fpga im pikosekunden-bereich", Master's thesis, TU Darmstadt, 2010.
- [8] http://www.gsi.de/onTEAM/grafik/1130845854/exploder_on.jpg

