
MAPS pixel readout based on the HADES TRB concept

Ingo Fröhlich University of Frankfurt

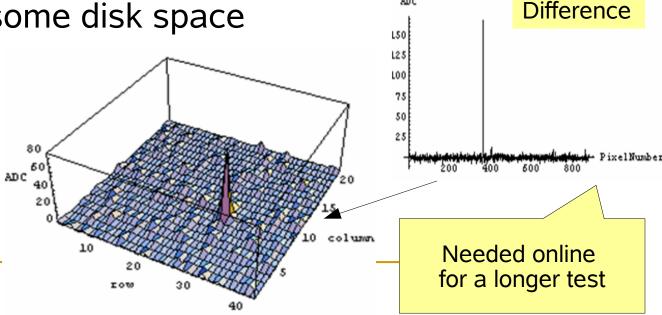
Introduction

- Monolitic Active Pixel Sensors (MAPS)
 - Candidate for inner part of the STS detector

 Test-Setup using USB hardware & analysis software from IReS / IPHC

Test setup at IKF

- Tests done with focus on radiation hardness ^[2]
 - Using USB readout board designed by IReS/ IPHC -Strasbourg
- Analysis done offline
 - No data reduction
- ToDo:
 - Tests for online data reduction algorithms
 - Study of integration of many MIMOSAS
 - In-Beam test with existing detector
- Needs readout hardware for large scale experiment


[1] Photo made by Gilles Claus, IReS / IHPC[2] Work done by S. Amar-Youcef

Data from Test-Setup

- MAPS: Detection of ionizing particles based on charge loss
- Subtraction of 2 frames
 - CDS=correlated double sampling
 - Done offline after all frames have been taken
 - Requires some disk space

 Future full system tests require GSI based readout (e.g. HADES)

ADC -10001

·120

-1600 -1800

-2000 -2200

-1000 -1200 -1400

-1600 -1800

-2000 -2200 400

400

200

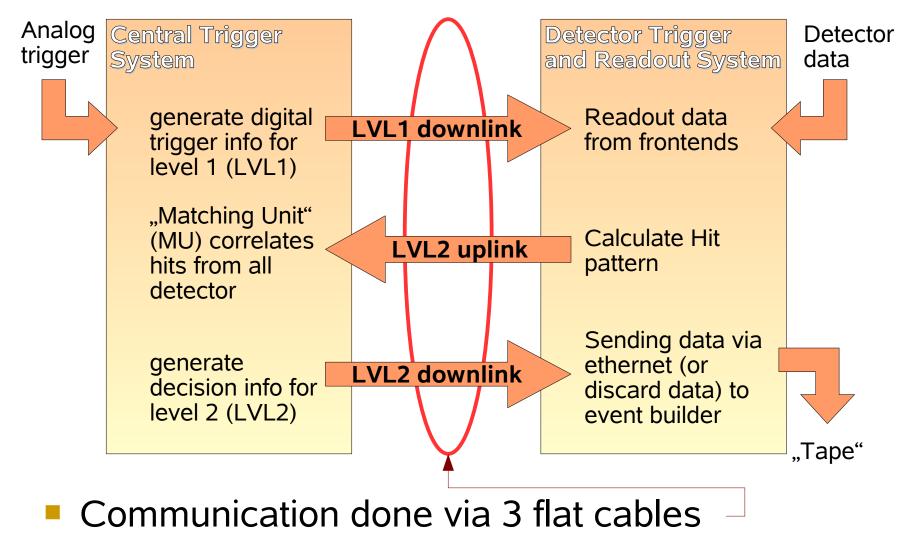
200

600

600

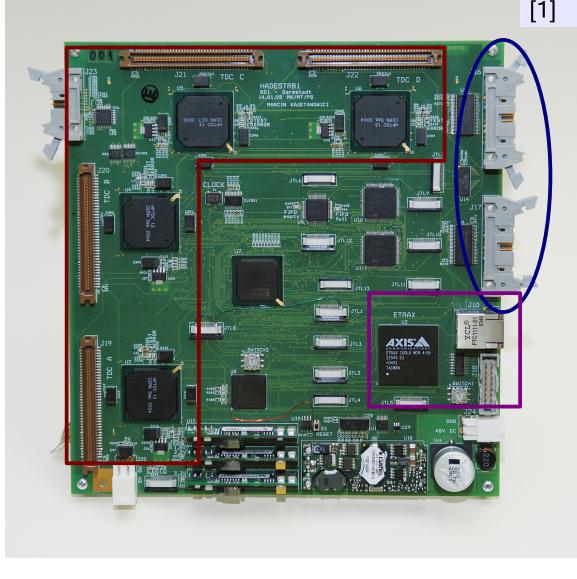
800

2 frames


800

PixelNumber

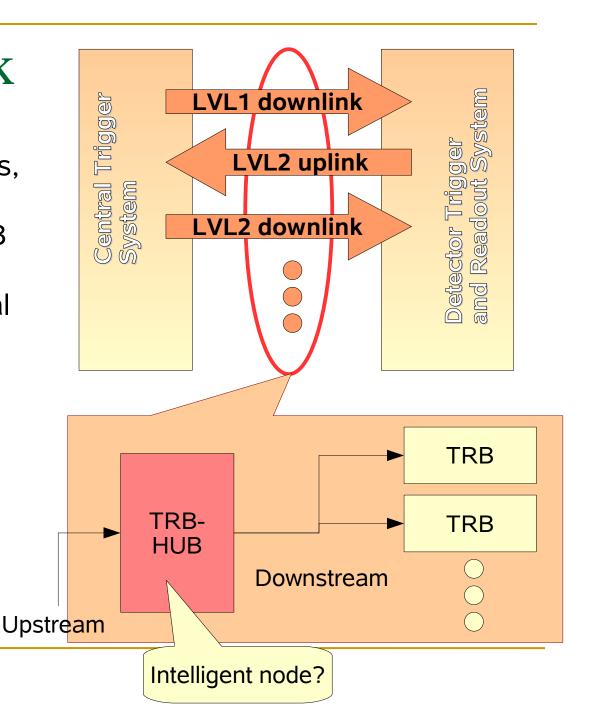
PixelNumber


- HADES could be a candidate for an in-beam test
- Parts of the HADES-DAQ will be redesigned:
- TRB (Triggered Readout Board)
 - Standalone & ethernet based
 - Can be adapted to different requirements
 - Allow for online data analysis & reduction
 - TRBv1 for HADES-RPC^[1] is existing and tested

HADES readout (simplified)

TRB v1.0

- 128 channel TDC based on HPTDC [2]
- On-board DAQ functionality via
 - ETRAX (Linux single chip computer) [3]
 - 100MBit interface
- Access to HADES LVL1 & LVL2 bus (only uplink part)
- Main purpose: Readout for the new HADES RPC
- First tests during beam time have been done


[1] M. Traxler , D. Gil, M. Kajetanowicz, K. Korcyl, M. Palka, P. Salabura, P. Skott, R. Trebacz: GSI Report 2006[2] HPTDC, Jorgen Christiansen, Digital Microelectronics Group, CERN[3] www.axis.com

TRB v2.0 (currently designed) [1]

- Faster ETRAX
- Online hit pattern calculation
 - Adapt existing Time-Of-Flight algorithm to RPC
- Needs new hardware
 - TigerSHARC TS201, 24MBit memory, 500MHz, fast LinkPort transfer
 - DSP = Digital Signal Processor (can be programmed via C-Language)
 - XILINX Virtex4
 - Programmable logic resources
- Needs uplink communication
 - Transport of found hits back to the Central Trigger System

TRB-Network

- Bidirectional optical link, TLK1501 SerDes, up to 1.5GBit/s
 - Requirement: HUB latency 150ns
 - 16 individual virtual channels
 - Can combine "old" cables into one protocol
 - Flexible for future extensions, new trigger schemes
- Allow integration of new detectors

Plans for MAPS Readout

- Build reference tracking system for in-beam tests
 - DAQ compatible with HADES
 - The TRB (+ TRB-network) allows to use the HADES trigger distribution & readout software
 - System integration
 - Special features for MAPS:
 - Replace TDCs by 12-Bit ADCs (e.g. 4 per board)
- Studies of online data processing
 - Reduction of data
 - Aspects of tracking
 - Tests can be done in FPGA & DSP

Summary

- Use a existing DAQ system for the MAPS prototype:
 - Important step to go from a test setup to a full system
- TRBv1 is existing and has been successfully tested
- TRBv2 will have online resources
 - DSP ("normal C")
 - XILINX Virtex4 ("logic design")
- Tests needed for the MAPS-Readout
 - Will be done at the technology lab / Frankfurt