
Readout with DMA technique

Radosław Trębacz



2



Contents

1 Data Aquisition System 5

1.0.1 The device driver for Etrax FS and Direct Memory Access technology 8



Chapter 1

Data Aquisition System

Figure 1.1: The new DAQ system.

Hades will be moved to the upcoming FAIR accelerator complex, where its experimental

program will be continue up to (tutaj bym dal 8 GeV of kinetic beam energies per nucleon)

kinetic beam energies per nucleon of 8 GeV. The average amount of data is expected to be

300MB/s and mean trigger frequency will be 20 kHz (in peak 100kHz). In order to take

the data in such conditions the HADES detector, readout and trigger system is currently

under upgrade.



6

An overview of the new Trigger and Data Aqquisition system is shown in Fig. 1.1. The

complete readout chain consists of the following basic elements:

• front-end electronics,

• readout electronics,

• slow control and trigger distribution system,

• event building system.

The first level trigger (LVL1) decision is created based on the charged particle multiplicity

taken from photomultipliers of the Tof and Tofino detectors. It arrives in very short time

t < 100ns. If LVL1 is positive, the next data from the RICH, TOF and a Shower detectors

is taken into account to calculate the LVL2 trigger decision. This algorithm is optimized for

searching electron pairs candidates. The positive decision of LVL2 induces a full readout of

data from all sub-detectors. After data has been read out from the front-end electronics, a

level-2 (LVL2) trigger algorithm selects events by searching for electron candidates. In order

to handle a latency which coresponds to several events (on the average it is 5-10 events),

the readout boards must have buffers large enough to hold the data for this time. If a LVL2

decision is issued, the data of the corresponding event is send (UDP network protocol is

used for this purpose) to the Event Builder (EB). The EB is a PC which combines the data

from different asynchronous data sources into complete events and finally writes them to

mass storage.

Up to now each of subdetector owns individual system to readout data from it. In the

new design the ”Trigger and Readout Board”(TRB), shown in Fig. 1.2, will be used as a

general platform for all subsystems. Together with a given AddOn board, that is assigned

to particular subdetector, TRB composes one physical unit.

The current version of TRB contains:

• Etrax-FS processor with 128MB memory connected to the 100 MBit/s Ethernet,

where a standard Linux 2.6 kernel is running. It will be decribed later,



CHAPTER 1. DATA AQUISITION SYSTEM 7

• 128-channel Time to Digital Converter electronics (tutaj bym dal ASICs), with time

resolution σ = 40ps, based on the HPTDC from Cern,

• optical link with throughput of 2GBit/s,

• programmable logic FPGA (Xilinx Virtex 4) connected to all main components on

the TRB to manage data flow on the board,

• TigerSharc DSP,

• a high data rate digital interface connector (32 LVDS lines, 15GBit/s and 32 TTL

lines). It gives the possibility to mount AddOn boards to the TRB which provide the

detector specific interfaces or additional computing resources.

All the detector specific functions are performed by detector dependent AddOn boards

which is mounted on the TRB. According to this concept, following AddOn boards were

built:

Figure 1.2: The front view of the Trigger and

Readout Board.

Figure 1.3: The MDC AddOn mounted on the

TRBv2 top. Here, the back side of the TRBv2

is visible in part.



8

1.0.1 The device driver for Etrax FS and Direct Memory Access

technology

It is important to mention that in this chapter the second version of TRB is presented.

A first version (TRBv1) was used successful in the beam time April 2007 to read out the

forward wall and the beam detectors.

The TRBv1 was fully integrated into the Hades DAQ system. 80 kHz on LVL1 (with

large down scaling) was achieved and LVL2 rates up to 18 kHz, which corresponds to data

rates of 1.8 MB/s. One should point out, that without DMA capabilities on the Etrax, the

processors performance has to be shared between the Hades sub event building software

and the readout from the LVL2 memory.

The design goal after optimization is 80kHz LVL1 rate and a LVL2 bandwidth of

10 MByte/s. In order to make it possible we decided to use direct memory access (DMA)

technology in the process of readout. To explain it, first the description of Etrax FS, fig.1.4,

in detail is needed.

The main elements of EtraxFS chip are:

• 200 MHz RISC CPU with a 32-bit data and address width, where the standard Linux

kernel is running,

• micro-code programmable I/O processor consisting of three 200 MHz 32-bit proces-

sors with local memory and hardware accelerators for real-time performance,

• 10 DMA channels each with 64 bytes FIFO,

• dual 10/100 Mbit/s full duplex Ethernet,

for: Rich, MDC, Shower and Tof.



CHAPTER 1. DATA AQUISITION SYSTEM 9

• several synchronous and asynchronous I/O ports with 80 read/write configurable I/O

pins

As it can be seen in figure 1.5, the I/O Processor is not a processor in a conventional

sense. From a software perspective it should be considered as a collection of blocks, which

are connected to each other in a chip-specific manner. However, the flow of data is con-

figurable with regards to which hardware blocks the data should traverse on its way to or

from a peripheral device.

The I/O processor contains one Master(MPU) and two Slaves(SPU) Processing Units.

When the first one can be consider as a traditional processor with interrupt(IRQ) handling

capabilities, SPUs differ from an ordinary CPU, because they can’t handle interrupts and

SPUs can execute state-machine code in a special mode called FSM-mode. The one of the

most importent module presented in Fig. 1.5 is the switch, which is used to configure the

individual connections between the modules of the I/O Processor.

The connections are defined by registers inside the Switch in the way to construct a

chain, where data will be transfer from I/O ports to DMA channel. After that data are (is

Figure 1.4: Overview of the Axis Etrax FS.



10

?) handled by a device driver.The DMA channel is a bus using DMA technology(to zdanie

troche takie maslo maslane). It means that moving(reading/writing) data inside this bus

happans without using the central processing unit (CPU). The wholeness was presented in

the Fig. 1.6.

Regardless of used AddOn boards (or in the case when front-end electronics are con-

nected directly to TRB) experimental data (goes ?) to FPGA chip. In the case of positive

LVL2 trigger decision it is forwarded to Etrax FS via I/O ports and the parallel data

path(PDP). After dma trigger sent by SPU0, data as events (collection of words) is stored

by device driver in the dedicated buffer. On demand of readout application these events

are copied from this buffer and sent via ethernet to the Event Builders all the time. This

visual draft was presented in the Fig.1.6 inside violet box.

The protocol between FPGA and Etrax FS is presented in the same figure, but in the

yellow frame. When 32-bits word was written on port B and C, a trigger from FPGA on

the pin 16 of the port B is set. Then data are automatically readout by Etrax chip and

it is routed over a dedicated path to DMA Communicator-In(DMC-In). Because of the

Figure 1.5: Block diagram over the I/O Processor.



CHAPTER 1. DATA AQUISITION SYSTEM 11

size of DMC-In buffer FPGA sends data to Etrax as a chain of 15 words with a constant

frequency. SPU was set to be sensitive for trigger going from FPGA and after the first-in-

PARALLEL CRC off

FIFO IN

DMC IN

PDP0

A
U

T
O

M
A

T
IC

A
L

L
Y

synchronization stage − SAP

PC[0−15]PB[0−17]

copy_to_user(finishedWord)

excess
of words copy(excess−>hugeBuffer[0])

throttle throttle OFF
busy OFF

DMA.ack_eop
descr++

lastPart

YES

c
o

m
p

le
te

e
v
e

n
t

c
o

m
p

le
te

e
v
e

n
t

h
u

g
e

B
u

ffe
r

read wordNr

enough space 
in hugeBuffer

throttle ON
dd_busy ON

copy(descr−>hugeBuffer) NO

YES

Data

15 words

Trigger PB16

Busy PB17

port B/C

Virtex

DMA
channel

CPU
device driver

wordsNr=read(to buffer)
select()

Virtex<−>Etrax

15 words/descr

return eventNr

YES

YES

NO

NO

can_read

finishedWord+=wordNr

firstPart

excess

DMA.eop

NO

finishedEv++

YES

DEVICE DRIVER

YES

NO

NO

can_rx_interrupt

NO
trigger

YES

set BUSY

YES
dd_busy

NO
send EOP

NO

YES
clean BUSY

PDP0

SPU0

etrax FS

Firmware
SPU0

send IRQ

packet2

packet1

packet50

next_fifo free

send Ev −> eth

readout

Figure 1.6: The data flow diagram.



12

the-chain FPGA trigger SPU sets busy signal on pin 17 of the port B. This signal informs

FPGA to not send next chain of words. In this state FPGA chip can only finish writing a

current chain of data. After the busy state was set, SPU is waiting some time needed to

gather 15 words and then it checks if a device driver busy state (”dd busy”) is set. If not,

SPU writes 16. word to DMC-In which contains EOP(end of packet) signal which induces

rewriting data from DMC-In buffer to DMA channel. It means, in practice, that data are

available by the device driver. This is the main step of SPU logic. When this is done, the

busy signal is clear and the whole cycle is repeated (Fig. 1.6, blue box).

The data path inside modules managed by the switch is presented in the Fig. 1.6, pink

frame. In the previous paragraph the automatically readout of data was mention. The logic

values from pins on ports B and C are read out and synchronized by the Synchronization

and Asynchronous Paths (SAP) module. In the moment of trigger arrival the Synchroniza-

tion and Asynchronous Paths (SAP) module readout the logic values from pins on ports

B and C. Data is synchronized (32-bits word as BUS1 is created and from this moment

) and adapted to the I/O Processor 200 MHz clock. After that the word is going to the

Parallel Data Path In (PDP-In) module. It consists of Parallel CRC, Fifo-in and DMA

Communicator In (DMC-In) modules. Each of these modules are connected with the next

one and data cross freely them up to DMC-In. When the word with EOP sending by SPU

reached DMC-In, an eop-interrupt to CPU is sent. The next words will be written to the

next packet. These packects are, we can say, interface between SPU and CPU. SPU con-

trols writing data to them, while CPU is reading them and sending to readout application.

There is no need to sending any information about availability of empty packets, because

this is control by SPU (”next fifo free” request).

The eop-interrupt calls ”can rx interrupt” function in the device driver, Fig. 1.6, one

of the green frames. This part of driver logic handles the packets. Most of the non-empty

events contain more than 15 words, therefore usually more than one packet belongs to one

event. Taking it into consideration one needs to read a header of each event from the first

packet of event and extract a number of words in a given event. Then the packet is copied

(always 15 words) to a main buffer and if the last packet of event arrived the position of



CHAPTER 1. DATA AQUISITION SYSTEM 13

the next event in the main buffer will be adjust to the real size of previous event. To take

into consideration that data in the data aquisition system are 64-bit aligned, when the

number of words in the event is uneven, one empty words is added. If the main buffer has

no space for the next event, ”dd busy” (and throttle variable) is set.

The function, described above, responds for the request from SPU and is responsible for

the addition of events to the main buffer. On the other hand, there is ”can read” function.

It is triggered by ”readout” application and copies a finished events to its. It could happen

that ”can read” function was called, when the main buffer contains not only the finished

events, but additionally one partly-completed event. In this case, this unfinished event is

copied at the beginning of main buffer. If ”throttle” was previously set to 1, after push the

content of main buffer to ”readout” it is reset, and also ”dd busy” is set to 0.

The last element on the way of event from I/O ports to ethernet is the user space

application ”readout”. It consists mainly of three methods:

• select(), to wait if at least one event is located in the main buffer

• read(), to read finished events to the local buffer

• NetTrans send(), to send data through the ethernet to the eventbuilder

After implementation of the above logic the rate of events increased from 40k/s to

125k/s with covering 15 words per event, which corresponds to 7.5MB/s of UDP ethernet

transfer.


