The IPU Channel Data Format

J. Michel

July 7, 2009

1 IPU Channel Data Format

1.1 Overview

All data on the IPU channel is organized in 32 Bit wide words. On the network, hidden
from the user, these are transported in two 16 bit words, MSB first.

The structure of the data stream will change slightly from the frontends through
several hubs and to the final SubEvent structure.

The start of each transmission is a network header (5x 16bit) which does not carry
necessary information on the IPU channel. The end is formed by the network termina-
tion packet (again 5x 16bit), which can transport some basic error information. Every
hub and every frontend contributes to this error information. Since this 32 bit wide
information has the same meaning in every stage, it is not shown in the sections dealing
with frontends and hubs.

1.2 Data sent by Frontends

The data structure is shown in table 1.1. The first word that is sent by any frontend
contains event information, namely the 16 bit event number, a 8 bit wide random code,
the 4 bit wide trigger type (T) and a so-called “pack-bit” (P). The remaining three bits

are reserved (R) for future use.

Bits 31.. 24 23 .. 16 15..8| 7..0
Event Information | RRRPT T T T | Random Code Event Number
Data Header Length Endpoint Address
Data Words Data

Table 1.1: IPU Data sent from any frontend. Single letters are explained in the text

The second word contains the length of data following (counted in 32 bit words) and
the TrbNet address of the frontend board. This dataword is generated automatically
by the endpoint itself.

Afterwards, all event data is sent. The datastructure depends on the specific require-
ments of the frontend. It is suggested to put a general data descriptor in the first word,

then followed by event data and / or debug information if needed.
The frontend has to send the event information and data header in any case, also

when there is now event data available, e.g. because no hit was detected.

1.3 Data Stream generated by Hubs

A hub merges data from one or more senders into a single data stream. Table 1.2 shows
the resulting data stream in case of a hub with two connected frontends, one delivering
two data words, the other only one data word.

The event information word is read from all connected frontends, checked to be right
for the expected event and then sent as a single word in the beginning of the data
stream. Afterwards, the hub adds up the length information in the data header from all
received data streams and generates a new data header, containing the overall length
and the network address of the hub. Finally, all incoming data is forwarded starting
with the data header of each data stream.

Bits 31 .. 24 23 .. 16 15..8]7..0
Event Information | RRR1TTTT | Random Code | Event Number
Data Header Hubl Length (5) Hub Address
Data Header FEE1 Length (2) FEE1 Address
Data Words Datal FEE1

Data2 FEE1
Data Header FEE2 Length (1) FEE1 Address
Data Words Datal FEE2

Table 1.2: Hub merging data from two frontends in non-packing mode

This operation mode is called non-packing mode. Opposed to that, the packing mode
(table 1.3) would remove the data headers received from the frontends. This can only
be done if the remaining data stream still contains all information needed to unpack
and process the data.

Which of the two operating modes is used is chosen based on the “pack-bits” received
in the event information word: If this bit is set in all received data streams, then (and
only then) the packing is enabled. Data sent from frontends will always have the pack
bit cleared, so that the address information is always kept.!

'Even though the RICH data format would allow to remove the length/source information from the
frontends, it will be kept. The first argument is, that the overhead generated by these words is
negligible. The second more importan point is, that the SubEventBuilder has to be able to add his
own data words to the end of the data stream and therefore needs to put its own length/source
information to the data stream. Without this information it would not be possible to detect the

The packing mode does not only reduce the amount of data, but has another advan-
tage as well: In the non-packing mode, each additional layer of hubs would add another
Data Header with a new overall length and a new hub address. Then the program un-
packing the data is not able to know how many data headers will appear before the first
data word without additional information (i.e. the number of hubs used) not contained
in the data stream. Therefore, the first hub will set the pack-bit in its outgoing data
stream in any case to allow (possible) next hub to remove its data header.

Under this assumption, the number of data headers stays constant, no matter how
many hubs the data is passed through. If the frontend data does not allow packing (e.g.
MDC), there are two data headers before the first data word. If the frontend allows
packing (e.g. RICH), there is only one data header.

Bits 31.. 24 23..16 [15..8[7..0
Event Information | RRR1TTTT | Random Code | Event Number
Data Header Hubl Length (3) Hub Address
Data Words Datal FEE1

Data2 FEE1

Datal FEE2

Table 1.3: Hub merging data from two frontends in packing mode

1.3.1 Debugging Information from Hubs

To send debugging information, the hubs are allowed to add an own data header and
an arbitrary number of data words to the end of each transfer. This data will then
appear as if it comes from another endpoint but has the network address from the hub.
Clearly this feature can only be used when the hub is used in a non-packing mode, since
otherwise the hub debug data can not be detected properly.

1.4 The SubEventBuilder

Before data transported on TrbNet can be forwarded via Ethernet to the Event Builder,
a SubEventHeader has to be added. This will always be done as the last processing step
inside an FPGA, no matter whether the data is then directly sent via Gigabit Ethernet
or piped through an Etrax CPU. (At least, this is our plan, for the meantime building
subevents is up to the software)

The SubEventBuilder reads the first two words, namely Event Information and the

end of event data and the start of SubEventBuilder information

Bits 31 .. 24 23 .. 16 15..87..0
Event Information | RRR 1T TTT | Random Code | Event Number
Data Header Hubl Length (7) Hub Address
Data Header FEE1 Length (2) FEE1 Address
Data Words Datal FEE1

Data2 FEE1
Data Header FEE2 Length (1) | FEE1 Address
Data Words Datal FEE2
Data Header Hub Length (1) ‘ Hub Address
Data Words Datal Hub

Table 1.4: Hub merging data from two frontends in non-packing mode and adding some
debug information

Data Header from the last hub, and generates a SubEventHeader based on this infor-

mation.

1.4.1 Network Termination Packet: Error and Status Information

The network termination packet transports an overview of errors that happened during
readout. There are 16 bits of information as shown in table 1.6.
This information is transported in the same manner as hubs add debug data, namely

with an additional data header in the end of the datastream.

Bits

31 .. 16 15.. 0

SubEventHeader

SubEventSize
SubEventDecoding

SubEventID (fixed network address of SubEventBuilder)

SubEventTriggerNumber

Data Header

Length FEEL |

FEE1 Adress

Data Words Datal FEE1

Data Header Length FEE2 ‘ FEE2 Adress
Data Words Datal FEE2

Data Header Length SEB (1) ‘ SEB Adress
Add. Information SubEventInformation

Table 1.5: Data output of the SubEventBuilder (here: non-packed format. In packed

Bits
16

17
18

19
20
21
22
23
24
25
26
27

28
29
30
31

format, the data headers would be missing)

Name

trg. number mismatch

trg. code mismatch
wrong length

answer missing

not found
partially not found
severe problem

single broken event

Description
Trigger number received does not match internal
counter value
Mismatch in upper 16bit word of event information
Length submitted in HDR does not match real
length
a board sent a short transfer instead of DHDR

sent trigger number does not match stored events
parts of the data are missing
serious sync problem detected - intervention needed
event data corrupted, next event most likely not
affected

Table 1.6: Error- and Status information contained in the network termination packet

