Chapter 1 - Introduction to VMEbus

38

The VMEbus Handbook, 34 Edition

Chapter 2
ta Transfers

VMEDbus data is transferred over the Data Transfer Bus (DTB). Masters use the DTB to move
data to and from slaves, interrupters use it to pass STATUS/ID words to handlers, and location
monitors use it to initiate local activity in response to certain types of cycles.

The Data Transfer Bus was non-multiplexed under revisions A, B, C, C.1, IEC 821 and IEEE
1014-1987 of the VMEDbus specification. However, the proposed VMEG64 bus specification al-
lows multiplexed 64-bit address and data transfers. This enhancement doubles the theoretical
bandwidth of the bus.

2.1 VMEG64

During the initial development stage of VMEbus in 1981, 16-bit microprocessors (such as the
MC68000) with 24-bit addressing had only just hit the market, and eight bit peripheral chips
were the state of the art. 32-bit processors had not been developed. The original bus architects,
however, had the vision to define an architecture capable of handling 8, 16 and 32 bit data
widths, as well as 16, 24 and 32-bit addressing modes.

However, as the speed of microprocessors, memory and I/O have increased, the theoretical
bandwidth of VMEbus has become a significant factor in overall system capability. The theo-
retical VMEDbus data transfer rate of 40 Mbytes per second has become a reality, and in some
applications is a severe limitation of the bus. Typical applications that require higher bus band-
width include FDDI disk controllers, image processing, bus-to-bus links and closed loop ma-
chine controls.

Chapter 2 - Data Transfers 39 The VMEbus Handbook, 374 Edition

Some users feel that 64-bit data transfers are not necessary, especially if 16 or 32-bit CPUs are
used. However, 64-bit data transfers are very useful in message passing architectures. In these
systems message packets are assembled on each CPU (or I/O) module, and passed in a burst
mode across the bus. The 64-bit bus is especially effective when large message packets are
used.

To keep up with the need for ever faster transfer rates, a variety of schemes were proposed.
These ranged from changes in setup-and-hold timing, to secondary buses to off load main
VMEDbus traffic. While these techniques can improve system performance, they either don't
conform to the VMEDbus standard, or they create radical changes to system architecture.

In 1988 Performance Technologies (East Rochester, N.Y. - USA) developed a superset to
VMEDbus which almost doubled the theoretical bandwidth of the bus. The Performance
Technologies approach modified the block transfer cycle so that the address lines (unused after
the first data transfer) carried an additional 32-bits of data. This extended the data transfer
width from 32 to 64-bits, and has since become popularly known as VMEG64.

The attractiveness of the VMEG4 operating mode is its simplicity and compatibility with previ-
ous VMEDbus specifications. The VME64 block transfer cycles (D64BLT) were defined using
the identical timing and operating parameters of the similar 32-bit block transfer cycle
(D32BLT). The physical implementation was straightforward and required no special back-
plane modifications.

VME®64 has since been adopted in a proposed revision to the VMEDbus specification. As part of
the revision, the VITA technical committee included other enhancements to the specification
such as several types of 64-bit addressing modes, standard CSR register scheme, auto slave ID
and auto system controller functions.

2.2 Bus Cycles

The Data Transfer Bus allows several types of bus cycles. These include the read/write, block
transfer, read-modify-write and address-only cycles. Chapter 4 covers an additional cycle
called the interrupt acknowledge cycle. Not all bus modules are compatible with all types of
bus cycles. When evaluating or designing VMEbus modules, be sure that slaves are compatible
with the cycles generated by the masters. For example, a master may generate a read-modify-
write cycle, but not all slaves respond to it.

2.2.1 Read/Write Cycle

The read/write cycle is the most commonly used of all the bus cycles. It is used to pass data
between masters and a slaves 8, 16, 24 or 32 bits at a time.

2.2.1.1 Addressing

A master addresses a slave during every read/write cycle. This is done with address lines AQ1-
A31, a six bit address modifier code AM0-AMS, and two control signals IACK* and
LWORD#*. All of these signals are qualified by the falling edge of address strobe AS*. In ad-
dition, the two data strobes DS0* and DS1* determine which byte location within a four byte
group data should be accessed. There is no address line AQQ.

Chapter 2 - Data Transfers 40 The VMEbus Handbook, 318 Edition

An alternative design approach permits addresses to be qualified on the falling edge of the data
strobes DSO* / DS1#* rather than address strobe AS*. This simplifies the design of slave
boards.

2.2.1.2 Address Sizing

There are four possible address widths as shown in Table 2-1. These are called short I/0, stan-
dard, extended and long addressing modes, and correspond to 16, 24, 32 and 64-bits respec-
tively. The size can be changed on every bus cycle. The most obvious advantage to this
scheme is to allow older microprocessors to share the bus with newer ones. For example, a
CPU module with a 68000 microprocessor capable of generating 24-bit addresses may share
the bus with a 32-bit 68020.

Table 2-1. Dynamic address sizes.

Address Modifier | Address Active .
Type Bits | AddressLines | Mnemonic
Short 1/O 16 AOL - A15 Al6
Standard 24 AQL - A23 A24
Extended 32 AOQL - A31 A32
AOI - A31
Long () 64 D00 - D31 Ab4

(1) Denotes proposed VMEbus enhancement

A64 addressing was first permitted under the proposed VMEG4 bus specification. The A64
concept arose from the development of the D64 block transfer cycle.

2.2.1.3 Address Modifier Code

A six bit address modifier code AM(-AMS5 accompany each address. The address modifier is
decoded as shown in Table 2-2. During a bus cycle the slave monitors the address modifier to
determine which address lines to decode. Short I/O addresses are decoded from AQ1-AlS,
standard addresses from A01-A23, extended addresses from AQ1-A31 and long addresses from
A01-A31, LWORD* and D00-D31. The address lines are routed as shown in Table 2-3.

The address modifier also indicates the type of bus cycle. It discriminates between instruction
fetches, data read/write cycles, block transfer cycles and whether the cycle is generated by
supervisory or non-privileged programs.

The function of the IACK* signal is closely associated with the address modifier codes.
IACK* is asserted by interrupt handlers to show that the current cycle is an interrupt ac-
knowledge cycle, and negated by masters to show that it is a data transfer cycle. It is useful to
think of JACK* as a seventh address modifier bit. When IACK* is asserted, AMO-AMS is
ignored by slaves.

Chapter 2 - Data Transfers 41 The VMEbus Handbook, 314 Edition

Table 2-2. Address modifier codes.

Address No.
Modifier | TACK* | Address Transfer Type
(Hex) Bits
3F 1 24 Standard supervisory block wansfer
3E 1 24 Standard supervisory program access
3D 1 24 Standard supervisory data access
aCw 1 24 Standard supervisory 64-bit block ransfer
3B 1 24 Standard non-privileged block transfer
3A 1 24 Standard non-privileged program access
39 1 24 Standard non-privileged data access
38 (1) 1 24 Standard non-privileged 64-bit block transfer
2D 1 16 Short supervisory access
29 1 16 Short non-privileged access
10 - IF 1 - User defined
OF 1 32 Extended supervisory block transfer
OE 1 32 Extended supervisory program access
0D 1 32 Extended supervisory data access
0C (M) 1 32 Extended supervisory 64-bit block transfer
0B i 32 Extended non-privileged block transfer
0A 1 32 Extended non-privileged program access
09 1 32 Extended non-privileged data access
08 (M 1 32 Extended non-privileged 64-bit block transfer
07 (1) 1 64 Long supervisory block transfer
06 (1) i 64 Long supervisory program access
05 () 1 64 Long supervisory data access
04 (M 1 64 Long supervisory 64-bit block transfer
03 (1) i 64 Long non-privileged block transfer
02 1 64 Long non-privileged program access
01 (f) 1 64 Long non-privileged data access
060 (M 1 64 Long non-privileged 64-bit block transfer
XX 0 3 Interrupt acknowledge cycle (uses A01-A03)
Note: All codes other than those shown are reserved for future use.
Don't care state = (XX), undefined = (-), low level signal = (0), high = (1),
(1) denotes proposed VMEDbus enhancement.

Chapter 2 - Data Transfers

42 The VMEbus Handbook, 3td Edition

Table 2-3 Address routing during various addressing modes.

Active Portion of Data Transfer Bus - Address Routing

Address Modifier
D24-D31 | D16-D23 | D0O8-D15 | DO0-DO7 | A24-A31 | A16-A23 | AD4-A15 | ADL-AO3 Codes
(Hex)

During address broadcast portion of bus cycle only Long (64-bit) (f)
A63 A01 00 - 07

Extended (32-bif)
08 - OF

” .
f///, 23 pgy| Stndrd 24

7

A31 AD1

A01

A
7
///// A03-A01 Acﬁzﬁfé o

Unused portion of address bus
[7] = Used to pass data

(1) Proposed VMEbus enhancement

Address modifier codes also simplify the design of many VMEbus modules. Modules can be
as simple or complex as the application requires. Slaves, such as a serial I/O modules, require
only several bytes of address space and can use short I/O addressing. This reduces part count
by decreasing the number of comparators and control logic. This lowers the board cost and
conserves space. More complex modules such as memory or graphic controllers require stan-
dard, extended or Jong addresses because of large memory requirements.

The address modifier also makes single (3U) and double height (6U) modules compatible.
Single height modules use only the P1 connecior, they can only monitor address lines AQ1-
A23. This limits these modules to the short I/O and standard cycles. Double height modules,
however, can monitor an additional eight or sixteen address lines on the P2 connector, and can
perform 32 and 64-bit address transfers. Without the address modifier, the simple P2 expan-
sion bus would be awkward.

2.2.1.4 Address Mnemonics
A series of mnemonics have been developed to help users select compatible modules. A series
of standard address mnemonics are shown in Table 2-4. A16, A24, A32 and A64 mnemonics

correspond to the number of address lines used in a transfer. For example an A16 slave will re-
spond to bus cycles generated by an A16 master.

The VMEbus Handbook, 3rd Edition

Chapter 2 - Data Transfers 43

When selecting modules with master capability, make sure that they will generate all the cycles
required by the slaves. This is not guaranteed by all versions of the VMEDbus specification.

The IEEE-1014-1987 VMEDbus specification requires that A32 masters generate A24 and A16
cycles. Similarly, A24 masters must also generate A16 cycles. Slaves do not have any such re-
quirements.

The A64 addressing scheme was first introduced in the proposed VMEG64 version of the
VMEDbus specification. 64-bit addresses were not allowed under earlier versions. A64 masters
must include the A32 and A24 capabilities, but not necessarily the A16.

2.2.1.5 Typical Read/Write Cycle

During a typical read/write cycle the master first addresses a slave, and then transfers data. The
data is transferred using data lines D00-D31, WRITE*, data transfer acknowledge (DTACK¥*)
and bus error (BERR*). The data lines and the WRITE* signal are qualified using data strobes
DS0* and DS1*,

The timing waveform for a typical read cycle is shown in Figure 2-1. Here a master addresses
a slave by driving AQ1-A31, AMO-AMS, JACK* and LWORD?*, These are qualified by the
falling edge of AS*. The master also negates WRITE* and asserts data strobes DS0* and/or
DS1*. The slave decodes the address, places data onto D00-D31 and asserts data transfer ac-
knowledge DTACK*. When the master has latched the data, it informs the slave by negating
the data strobe(s). The slave then negates DTACK* and the cycle is terminated.

Table 2-4. Mnemonics that describe the various addressing modes.

Mnemonic Description

Als Generates (master) or accepts (slave, location monitor)
bus cycles with short I/O (16-bit) addresses.

A24 Generates (master) or accepts (slave, location monitor)
bus cycles with standard (24-bit) addresses. A24 masters
must also be A16 compatible,

A32 Generaies (master) or accepts (slave, location monitor)

bus cycles with extended (32-bit) addresses. A32 masters
must also be A16 and A24 compatible.

AB4 (1) Generates (master) or accepts (slave, location monitor)
' bus cycles with long (64-bif) addresses. A64 masters
must also be A24 and A32 compatible.

(1) Proposed VMEDbus enhancement

A write cycle is similar to a read cycle as Figure 2-2 shows. The main difference is that data is
placed onte the data lines before the data strobes are asserted. Once the slave asserts DTACK*
or BERR*, the master can immediately negate WRITE* and change the data lines. For this rea-
son a slave must latch the data before it asserts DTACK*.

The VMEbus Handbook, 314 Edition

Chapter 2 - Data Transfers 44

A0O-A31,
AMO-AMS
LWORD*

IACK*

 Valid Valid

Address rot

AS*

WRITE*

DSA*

DSB*

DO0-D31 Valid

DTACK*
BERR*

Figure 2-1. Read cycle with address pipelining.

2.2.1.6 Data Strobes

The data strobes DS0* and DS1* serve a dual function. As a level sensitive signal they select
which bytes are accessed. As an edge sensitive signal they are used to qualify data.

AQ0-A31,
AMO-AMS
LWORD*

IACK*

Valid Valid

Address rot
AS*

WRITE*

DSA*

DSB* Valid

DO0-D31

Valid
Data rot

DTACK* |
BERR* ;

Figure 2-2. Write cycle with address pipelining.

The VMEDbus specification does not use the terms DS0* and DS1¥ in its timing diagrams.
Instead it refers to DSA* and DSB*. This notation was introduced to prevent confusion in
cases where bus skew (propagation delay) causes one data strobe to fall or rise before the other.

Chapter 2 - Data Transfers 45 The VMEbus Handbook, 374 Edition

Propagation delay times through transceivers at the master may also cause these signals to be
sent at slightly different times.

2.2.1.7 Cycle Termination by DTACK*, BERR*

Slaves terminate all bus cycles by asserting DTACK* or BERR*. DTACK* is the normal way
to end the cycle. During read cycles the slave asserts DTACK* after driving the data bus, and
during write cycles the slave asserts it after it has latched the data.

BERR* can be asserted by a slave or a bus timer. When it is asserted by a slave it indicates that
an error has occurred during the cycle. The VMEbus specification does not say what may have
caused the error nor what should be done in response to it. For example, a memory module
may assert BERR* in response to a parity error.

The bus timer asserts BERR* if the bus has locked up. Bus lock-ups can be caused either by
system failures or out of range addressing. One popular use for this feature is for self configu-
ration of the system. During power-up initialization the number of cards can be counted by a
master in the system, as well as the amount of memory installed.

VMEDbus uses a fully interlocked handshaking mechanism with data strobes DS0* and DS1#,
DTACK* and BERR*. At the beginning of a cycle a master must not assert either data strobe
until DTACK* and BERR* (from the last bus cycle) have been negated. Failing to do so may
cause data to be corrupted on the current or the previous cycle.

Care must be taken when evaluating or designing masters that use the 680XX microprocessor
family. These microprocessors don't use a fully interlocking bus cycle, and external circuitry
must be provided to make them totally compliant.

2.2.1.8 Cycle Termination by RETRY*

The VMEG4 Specification designated the (former) RESERVED pin on the P2 connector (P2-
B3) as a RETRY* signal. RETRY#*, together with BERR*, can be driven low by slaves to
indicate that a requested data transfer cannot take place, but should be attempted again by the
master in a future bus cycle. The retry provision was made to prevent deadlock (deadly em-
brace) conditions in bus-to-bus links and secondary buses.

BERR* is used in conjunction with RETRY* so that upward compatibility from earlier designs
can be maintained. For example Revision C.1 VMEbus masters, which do not monitor the
RETRY* signals, would simply terminate the cycle as if a bus error took place. VMEG4 mas-
ters would terminate the cycle, but would re-attempt the cycle at a future time. Without the con-
current assertion of RETRY* and BERR*, the Revision C.1 master would not terminate the
cycle and the bus could potentially get locked-up.

After receiving RETRY* low, the master must relinquish control of the bus. This feature pre-
vents the deadlock conditions in bus-to-bus links and secondary buses. After relinquishing the
bus, however, the master should wait a short time before attempting to access the bus again.
The amount of time that a master waits before requesting the bus depends on the bus arbitration
method and system architecture. By waiting, the master allows other processors to access the
bus.

The RETRY* signal pin is fully compliant with backplanes designed under previous bus speci-
fications (before VMEG4). Earlier specifications required that the RESERVED pin be bused

Chapter 2 - Data Transfers 46 The VMEbus Handbook, 3td Bdition

and terminated, so the RETRY* function shouldn't be a problem. Unfortunately, some back-
plane manufacturers did not bus and terminate this pin, even though they should have. System
integrators should verify that pin P2-B3 is bussed and terminated before specifying or purchas-
ing a backplane.

2.2.1.9 Address Pipelining

Some microprocessors use address pipelining to speed up data transfers. During address
pipelining the bus master broadcasts the address of the next bus cycle before the current cycle is
completed. As shown in Figures 2-1 and 2-2, immediately after the slave asserts DTACK* the
master may negate AS* and place a new address on the bus. Data transfers can be speeded up
by overlapping the address broadcast with the previous cycle. Slaves must be designed to
function properly in the presence of an address pipeline cycles.

The removal of a valid address before DTACK* or BERR* are negated is sometimes called ad-
dress rot. Similarly, changing the data lines after DTACK* or BERR* are asserted during a
write cycle is called data rot.

When designing or evaluating slave interfaces, be sure they latch all addresses and address
modifiers before asserting DTACK* or BERR*, The address is often latched on the falling
edge of either data strobe. Failing to do so may cause the slave to change its data lines before
the end of a read cycle because its on-board address has changed. During a write cycle the
slave's internal timing may be disrupted.

When evaluating or designing slaves that do not utilize address pipelining (all slaves must func-
tion properly in the presence of these cycles), care should be taken when latching the address on
the falling edge of AS*. On read cycles, the master can negate and re-assert AS* immediately
after a slave asserts DTACK* or BERR*. If the address is latched on the falling edge of AS*,
the slave could be presented with a new address before it negates DTACK* or BERR*, This
could corrupt the data. On slaves which do not implicitly participate in address pipelining cy-
cles, it is better to latch the addresses on the falling edge of the data strobes. The data strobes
can be 'or'ed together and used to latch the addresses.

When evaluating or designing modules that support block transfer cycles (discussed below),
special care should be taken to insure that address pipelining will work. During the block
transfer cycle the master may change A01-A31 and LWORD#* after the first falling edge of
DTACKH*, but the address modifier code AM0-AMS must remain stable until the last falling
edge of DTACK*,

Address pipelining also reduces the overhead needed to change bus masters (see Chapter 3 on
Multiprocessing). During bus arbitration, a new master can assume ownership of the data
transfer bus (assert BBSY*) after the current master negates address strobe AS*. Arbitration
occurs in parallel to the current master's final data transfer cycle.

Special consideration to address pipelining must be given in A64 and D64BLK cycles. These
cycles are permitted under the proposed VMEG64 Specification. For example, during a D64BLK
read cycle the address bus is used to transfer data. After the last falling edge of DTACK* or
BERR¥, the master must assert AS* until DTACK* or BERR* has been negated. The prevents
another master from driving the address bus (and the data on it) before the current master has
latched the data.

Chapter 2 - Data Transfers 47 The VMEbus Handbook, 3rd Edition

2.2.1.10 Data Sizing

The data bus is dynamically configured (just like the address bus). Data transfers of 8, 16, 24,
32 and 64-bits can be made without any software overhead whatsoever. This makes VMEbus
products compatible over wide ranges of technology.

Data bus sizing is achieved by splitting the data lines into four byte-wide banks: D00-D07, D08-
D15, D16-D23 and D24-D31. The master signals the type and size of transfer with strobes
DS0* and DS1%*, address line AQ1 and LWORD?#*,

VMEDbus uses a BYTE(n) convention to specify how data is stored in memory, where (n) is the
address offset from an even 32-bit boundary. Table 2-5 shows this convention.

Table 2-5. Data organization in memory.

Categories of Byte Locations
4-Byte Group 8-Byte Group (1)
Byte Address Byte Address
Operand . rand .
(Binary) Ope (Binary)

BYTEQ©) XXXX...XX00 BYTE(0) XXXX...X000
BYTE(1) XXXX...XX01 BYTE(1) XXXX... X001
BYTE(2) XXX KXX10 BYTE(2) XXXX...X010
BYTE®3) XHXX...XX11 BYTEQ?) XXXX...X011
BYTE®4) XXXX... X100
Key: BYTE(S) XXXX...X101
(X) Don't care BYTE(®6) XXXX...X110
(1) Proposed VMEbus enhancement BYTE(T) XXXX...X111

During a data transfer the master asserts DS0*, DS1*, AQ1 and LWORD* depending upon
where it expects to read or write data. The level of these signals and the associated data paths
are shown in Table 2-6.

Dynamic data sizing allows older and newer technologies to work together. For example, a
CPU module with a 68000 microprocessor (8 or 16-bit data path) can share VMEbus with a
68020 based CPU (8, 16, 24 or 32 bit data path).

VMEDbus offers five styles of bus interface. These are classified using the mnemonics D08(O),
DO8(EQ), D16, D32 and D64. :

The D08(O) slave transfers data on lines D00-DO7. Transfers of eight bits can be made at odd
addresses (e.g. $0002FF01 or $0002FF03). D08(0) masters are not specifically allowed under

the VMEDbus specification since these are simply a subset of the DO8(EQ) master. An example
of a DO8(O) slave would be an 8-bit serial I/O module.

The DO8(EO) master or slave allows bytes to be transferred at even or odd addresses.
Transfers to or from these modules must be done eight bits at a time, and only one data strobe
may go low at any time. An example of a master with this interface would be a CPU module
with an 8-bit processor (such as an MC68008). '

The VMEbus Handbook, 3rd Edition

Chapter 2 - Data Transfers 48

The D16 master or slave allows 16-bit data transfers over data lines DO0O-D16. The D32 master
or slave allows 24 or 32-bit transfers over data lines D00-D31. D16 or D32 modules that locate
data at other than two or four byte boundaries are said to support unaligned transfers (see be-
low).

The D64 interface monitors or drives data lines DO0-D31 as well as address lines A01-A31 and
LWORD*. This interface was first permitted under the proposed VMEG4 bus Specification.
The specification also requires that D64 masters, slaves and location monitors include the
DO8(EQ), D16 and D32 capabilities.

The IEEE-1014-1987 version of the bus specification requires that D16 masters, slaves and lo-
cation monitors include the DO8(EO) capability. It also requires that D32 masters, slaves and
location monitors include the D16 and DO8(EQ) capabilities. These were both optional under
the Revision B, C, C.1 and IEC 821 versions of the bus specification.

The VMEDbus specification does not provide slaves with the ability to acknowledge data port
size during a transfer. Some popular microprocessors (like the 68020 and 68030) require
slaves to do so. This requires the use of memory mapping or mode bit techniques.

In memory mapped systems the data port size is selected by the address. For example, a
D16:D32 CPU module may configure its bus interface as a D16 master during bus accesses
between $00000000 and $00FFFEFF, and 32-bits between $01000000 and $01FFFFEF.

Selection of a data port size may also be accomplished with a mode bit. The CPU sets a bit
indicating the type of required access. For example, the bit could be set when the master gen-
erates a D32 cycle, and cleared for a D16. The advantage of this method is simplicity of design.
The disadvantage is that system software needs to continuously toggle the mode bit.

2.2.1.11 Unaligned Data Transfers

Unaligned data transfers are allowed under the VMEbus specification. VMEbus modules can
place two or four bytes of data at other than two or four byte boundaries. These are called
unaligned transfers. Unaligned transfers can speed up a VMEbus system by allowing 32-bits
of data to be transferred at odd addresses in two bus cycles instead of three.

When a master reads or writes data it can do so in a variety of ways. For example, consider
case B of Figure 2-3. Here a four byte transfer takes place at an unaligned boundary. The
master can transfer the data using one of two methods. By one method the master transfers a
Single Byte(1), a Double Byte(2-3) and a Single Byte(0). This means that the whole transfer
requires three bus cycles. Using a second method the master performs an Unaligned Byte(1-3)
and a Single Byte(0) transfer. This second method takes only two bus cycles. Unaligned
transfers can substantially reduce the number of bus cycles.

The VMEDbus specification does not stipulate the order in which data is transferred to or from
memory. In the example above, the Single Byte(0) transfer could take place before or after the
Unaligned Byte(1-3) transfer. This can be important in multiprocessor systems where another
master may be granted a bus cycle between two consecutive transfers. Software engineers
should design flags accordingly.

Figure 2-4 shows four ways that 16-bit words may be stored in memory.

Chapter 2 - Data Transfers 49 The VMEbus Handbook, 3t Edition

Table 2-6. Active portions of bus during data transfers.

// . ENemm
_ //////////////%/m‘wm o0
/////////////////////mm;///,

///////////////////;ﬁi%
/// ///////////Xm
777w un

Byte(3)
4Byie Bye() B
Group 2 Byte(1) A
Byie(3) =S
4By Byte(2) 3

Case A
|

Group 1 Byte(1)
Byte(0)

Figure 2-3. Four ways that 32-bits of data can be saved in memory.

Byte(3)

4Byte Byte(2)
Group 2 Byte(1)
Byte(0)

Byte(3)

4Byte Byte(2)
Group 1 Byte(1)
Byte(0)

Case H
|

Case G

Case F

Case E

Figure 2-4. Four ways that 16-bits of data can be saved in memory.

A special UAT mnemonic specifies whether an unaligned transfer can be generated by a master,
accepted by a slave or monitored by a location monitor.

The IEEE-1014-1987 version of the bus specification requires that D32 slaves and location
monitors must accept unaligned (UAT) data transfers. D32 masters are not required to generate
these cycles, however. The UAT function was optional for slaves and location monitors under
earlier versions of the bus specification.

There is no provision for D64 unaligned data transfers.

Some software compilers can be set to generate code only on even boundaries. This reduces

the number of unaligned transfers and therefore speeds up the system. Some ccompilers with
this feature will not prevent data transfers at unaligned boundaries, only instructions.

2.2.2 Block Transfer Cycle

The block transfer cycle moves blocks of data at high speed across the bus. The block transfer
cycle is sometimes called the burst mode.

The VMEbus Handbook, 3¢ Edition

Chapter 2 - Data Transfers 51

. . P o ot address $100,
ider a CPU module feiching program instructions: if an instruction is read at a)
gi:llflld;robably read the next one at $102 or $104. Some computers take %dva}?ta(g}% %f .thgﬁ i;y
'thinking ahead' and reading data from the next few bytes of memory while the gs E? y
decoding the current instruction. Circuits which do this are often called instruction prefetch or
pipelining circuits. Special dynamic memories, called page mode and nibble r}negg _mcmo}iesﬁ
are sometimes used to simplify instruction prefetch. These memories can be placed into a ! g
speed 'dump' mode which allow fast burst transfers. In dump mode these memories are otten

double or triple the speed of normal memories.

When software message passing schemes are used, the messages are often assembled on a
CPU and 'burst' across the bus. The block transfer cycle can streamline message passing

architectures.

i i fer data in small bursts,
ltiprocessing systems the block transfer mode can be used to trans
gﬁgingrthe ovefhe?alld of bus arbitration. Disk intensive applications use the block transfer
cycle to move data at high speed between CPUs and disk controllers.

i i ts an address
The block transfer cycle is faster than read/write cycles because the master presen
oniey once during they cycle. The extra overhead of computing and changing addresses does not
take place. The timing diagram for a block transfer cycle is shown in Figure 2-5.

AMO-AMS Valid
IACK*
A01-A31 %
LWORD* el
[&]
AS* § :
; =t
D00 - D31 . valid _ Valid B

DSA*

DTACK*

Figure 2-5. Block transfer cycle (write).

i ifier i d by the mas-
D the cycle both an address and a block transfer address modifier is presente] :
teil“l?§ %he sla)\lrc. Once the slave is addressed, multiple bytes of data can be read or written (in
ascending order) by toggling the data strobes. Block transfer counters on the slave automati-
cally increment their on-board addresses. This relieves the master from computing and chang-

ing the address during every cycle.

ili i ic i tibility
The ability to generate or accept a block transfer cycle is optional. To prevent incompa
betiféen rillodlﬁes, a mnemonic called BLT is used. If a master can generate a block transfeT:
cycle it is called a BLT master. If a slave can accept a block transfer cycle it is called a BL
slave. When integrating a VMEDbus system make sure that compatible modules are used.

The BLT mnemonic is not to be confused with the bacon, lettuce and tomato cycle (which is not
supported by VMEDbus).

The VMEbus Handbook, 34 Edition

Chapter 2 - Data Transfers 52

2.2.2.1 Block Transfer Cycles Under Early VMFEbus Revisions

To reduce the complexity of block transfer slaves, a rule was introduced in the revision C
VMEDbus specification which forbids block transfers from crossing 256 byte boundaries. This
rule was also included in the IEEE 1014-1987 version of the bus specification.

This provision solved several problems that existed with the block transfer cycle. It prevented
board-to-board crossings during a cycle, it reduced the address counter requirements to eight
bits, and allowed the use of commonly available nibble or page mode memories (many standard
memories require that block transfers don't cross 256 byte boundaries). If it must cross the
boundary the master can stop the cycle, re-submit a new address, and do another block transfer.

The 256 byte rule also prevents a master from hogging the bus with large numbers of cycles.
Since VMEDbus arbitration cannot take place with AS* asserted (see Chapter 3) bus ownership
cannot change during a block transfer cycle.

2.2.2.2 Block Transfer Cycles Under VME64

Several 64-bit block transfer cycles are included in the VME64 bus enhancements. All are
100% upward compatible with modules designed to previous VMEbus specifications. New

timing parameters are 'inside’ the cycle and will not affect modules which do not decode the ad-
dress modifier.

Two basic block transfer cycles were added under VMEG64: SSBLT (source-synchronized block
transfer cycle) and MBLT (multiplexed block transfer cycle).

At press time (September, 1992) the SSBLT cycle is being defined. SSBLT is a 64-bit multi-
plexed data transfer cycle with special handshakin g provisions. Data transfer occurs at the edge
of every data strobe. DTACK* acknowledgements are not required by the slave. The normal
VMEDbus handshaking protocols are abandoned, and the master synchronized every transfer:
hence the name source-synchronized block transfer cycle. SSBLT transfer rates should be be-
tween 100 and 160 Mbytes/second.

A second block transfer cycle is the MBLT. This cycle is also referred to as a D64BLT cycle.
The D64BLT cycle is a multiplexed version of the D32BLT. As Figures 2-6 and 2-7 show, the
major difference is that the first transfer of a D64BLT cycle transfers an address, but not data.
The second and subsequent transfers of a D64BLT cycle are identical to D32BLT except that the
address lines are used in conjunction with the data lines to transfer 64-bits of data with each data
strobe (DSO* & DS1*). D64BLT always transfers eight bytes per transfer to a double long-
word aligned address. Figure 2-8 shows a D64BLT bus cycle.

During 64-bit data transfers, the LWORD* pin is used for data bit D32. This is because there
are only 31 address lines A01-A31. Timing difficulties do not occur because the LWORD*
timing relationship is identical to the address lines.

Chapter 2 - Data Transfers 53 The VMEbus Handbook, 3rd Edition

A01-A31 & LWORD*

™ \V
32-bit address transfer only 64-bit address transfer only
A32:D64BLT Cycle AG4:DEABLT Cycle
N &
a) First bus cycle

A01-A31 & LWORD*

Y X
64-bit data transfer 64-bit data transfer
A32:D64BLT Cycle A64:DG4BLT Cycle

b) Second and subsequent bus cycles

Figure 2-6. Comparison between A32:D64BLT and A64:D64BLT cycles.

The VMEbus Handbook, 3td Edition

Chapter 2 - Data Transfers 54

R, 4 % &
4 Y4
32-bit address & 32-bit data transfer 32-bit address transfer only
A32:D32BLT Cycle A32:D64BLT Cycle
N £
a) First bus cycle

Il A01-A31 & LWORD*

e
Ve S £ Ry Ve &
32-bit data only, address lines not used 64-bit data transfer
A32:D32BLT Cycle A32:D64BLT Cycle
N /

b) Second and subsequent bus cycles

Figure 2-7. Comparison between A32:D32BLT and A32:D64BLT cycles.

Chapter 2 - Data Transfers 55 The VMEbus Handbook, 374 Edition

Specific changes in VMEG64 include:

o The D64BLT cycle is differentiated from a D32BLT cycle by the inclusion of address
modifier codes that were previously reserved. Refer to Table 2-2 for a listing of the
new address modifier codes.

o D64BLT also specifies the order in which data is transferred.
o Specifications of the rules and timing parameters that govern the switching of address
lines over to data lines. This is of particular concern for read cycles where a master

must relinquish control of the address lines to the slave. For more information, refer to
the section of this book on address pipelining.

o Specification of the maximum number of transfers allowed for a D64BLT cycle.
D64BLT cycles cannot cross 2K-byte boundaries. The purpose of this rule is the same for the
256-byte rule for non-multiplexed D32BLT, D16BLT and DO8(EO)BLT transfers.

Qualified by AS*

AMO - AMS
IACK*

AQ1-A31
LWORD*

ASH =

Valid Address Modifier Code

Valid Address

D00 - D31

Up to 256 cycles

WRITE*

DTACK*

Qualified by DSA* Qualified by DSA*

Figure 2-8. D64 block transfer write cycle. The read cycle is similar, except that data is valid
ongtﬁz falling edge of DTACK*. D64 block transfers were introduced in the proposed VME64
version of the VMEbus Specification.

2.2.3 A64 Addressing
Like D64BLT, all A64 cycles are 100% compatible with existing VMEbus backplanes and

modules. All A64 cycles are two or more transfers in length. As Figures 2-7 and 2-8 show,
the first transfer is an address broadcast and is common to all A64 cycles.

The VMEbus Handbook, 3rd Edition

Chapter 2 - Data Transfers 56

Chapter 2 - Data Transfers 57

A64:D64, A64:D32, A64:D16, A64:DO8(EO) and A64:D08(0) cycles have a single data trans-
fer following the address broadcast. A64:D64BLT, A64:D32BLT, A64:D16BLT and
A64:DO8(EO)BLT cycles have one or more data transfers following the address broadcast.

Specific changes to the VMEDbus specification included in VMEG64 are:
e Specification of address modifiers for A64 (long) cycles.

e Specification of how address bits are assigned to the data lines during A64 address
broadcast cycles.

e Specification of the rules and timing parameters that govern the change over of the data
lines from the address transfer role to the data transfer role. This is of particular concern
for read cycles where the master must relinquish control of the data lines to the slave.
For more information, refer to the section of this book on address pipelining.

2.2.4 Read-Modify-Write Cycle

The read-modify-write cycle is used in multiprocessor and multitasking systems. This special
cycle allows many processes to share common resources such as disk controllers, serial ports
or memory. As the name implies, the read-modify-write cycle reads and writes data to a mem-
ory location in a single bus cycle. It prevents the allocation of a common resource to two or
more processes. The read-modify-write cycle is sometimes called an indivisible cycle or a test-
and-set cycle.

One possible application for the read-modify-write cycle is an airline ticket reservation system.
Consider two people (at different locations) reserving seats on a flight from New York to
London. Unless specific care is taken, it is possible for both passengers to be allocated the
same seat (if both reservations are made at the same time). The read-modify-write cycle can be
used to prevent this situation.

For example, assume the ticket reservation software is set up so that each seat on the flight is
represented by a bit in memory. If the bit is zero, the seat is empty. If the bit is one, then the
seat is reserved. To reserve a seat, the ticketing software first reads the bit to see if the seat is
occupied. If the bit is zero the software sets it to a one. If it the bit is set (the seat is already oc-
cupied), then the software looks for another seat.

The following software is an example of problematic 680XX assembly code that allows two
seats to be allocated to the same passenger. This software does not generate a read-modify-
write cycle:

*

* A0 = LOCATION OF MEMORY BIT REPRESENTING SEAT

%

BTST.B #7,(A0) * 1S THE SEAT TAKEN?

BEQ GETSEAT * BRANCH IF SO

® * LOOK FOR ANOTHER SEAT
GETSEAT: BSET.B #7,(A0) * RESERVE THE SEAT

The problem occurs between the time the bit is tested (BTST.B) and set (BSET.B). During this
interval several instructions are performed (such as BEQ). In a multiprocessing or multitasking

The VMEbus Handbook, 3td Edition

system, a bus arbitration could take place between the time the bit is checked and set. If another
processor is running the same code, at the same time, both could get the same seat because they
both read the same bit as zero. The outcome would be two passengers booked on the same
seat; an embarrassing problem for the airline.

This problem can be solved with a read-modify-write cycle. In the 680XX family, a CPU can
generate this cycle using the TAS (test-and-set) instruction. This instruction reads a byte, tests
the condition of bit #7, sets it to a one, and writes it back to memory. Rewriting the previous
program using the TAS instruction:

%

* AQ = LOCATION OF MEMORY BIT REPRESENTING SEAT
%

TAS (AO) * TEST BIT AND SETIT

BEQ GETSEAT * BRANCHIF AVAILABLE

o * ADDITIONAL CODE
GETSEAT: #* .. AND CONTINUE

The airline reservation example is simplistic, but it does illustrate the use of the read-modify-
write cycle. Many multiprocessing systems must arbitrate for system resources such as mem-
ory buffers and peripherals.

Not all VMEbus masters or slaves can participate in read-modify-write cycles. Modules that
generate or accept the cycle are said to be RMW compatible. All modules must be able to toler-
ate RMW cycles, however. When evaluating or designing bus modules, look at the software
requirements to find out if modules need to be RMW compatible.

The read-modify-write cycle is shown in the timing diagram of Figure 2-9. During the cycle,
back-to-back read and write cycles are performed while AS* remains asserted. In the first half
of the cycle WRITE* is negated, and data is read from memory. The master modifies the data,
asserts WRITE®*, and puts it back. Keeping AS* asserted prevents bus arbitration in the middle
of the cycle. See Chapter 3 for more information on bus arbitration.

Read | Write

AMO - AM5
AO1 - A31
JIACK*, LWORD* _

AS*
WRITE*

Valid

DSA*

D00 - D31 Valid

DTACK*

Figure 2-9. The read-modify-write cycle. Note that AS* remains
asserted during the entire cycle.

Chapter 2 - Data Transfers 58 The VMEbus Handbook, 3td Edition

When evaluating or designing VMEbus masters capable of read-modify-write cycles, make sure
they do not change their address lines during the cycle. This can cause problems on processors
such as the 68020 which utilizes a special RMC (Read-Modify-Control) pin. Under certain
conditions the 68020 can change its address lines during the read-modify-write cycle. One pos-
sible solution is to latch the microprocessor address lines before the start of every cycle.

Problems can also happen on read-modify-write slaves. A common mistake is to use AS* to
drive the slave's DTACK* generator. Once the slave has been selected, use data strobes DS0#
and DS1* 1o assert and negate DTACK*. If this is not done, the module could lock up the bus.

2.2.5 Address-Only Cycle

The address-only cycle is used to broadcast an address. No data is transferred during the cycle.
This cycle is differentiated from read/write cycles in that masters do not assert either data strobe.
Since neither data strobe is asserted, the slave does not terminate the cycle with DTACK* or
BERR®. Figure 2-10 shows the address-only cycle.

AMO - AMS
AQ0L - A31
IACK*, LWORD*

AS*

DSA¥*

=

Figure 2-10. Address-only cycle.

The address-only cycle allows a master's local memory address decoder to work in parallel with
a slave's, and can speed up the bus in some cases. It can also simplify the design of some
masters. For example, a 68010 MPU with 68451 MMU may terminate a bus cycle after the
68451 asserts AS* (the MMU aborts the external cycle). The bus interface design is simplified
if these cycles are leaked onto VMEbus.

The ADO mnemonic is used to describe modules that can initiate or tolerate address-only cycles.
When evaluating or designing slave modules, make sure they tolerate ADO cycles. The IEEE-
1014-1987 version of the VMEbus specification requires that all slaves support ADO cycles.
Modules designed under earlier specifications are not required to do so.

2.3 Circuit Example - Simple 8-bit Parallel /O Module

While most boards in a system can be purchased through established vendors, the need often
arises for at least one custom VMEbus module. These are usually specialized I/O modules that
are customized to the application. Often the resources dedicated to these custom projects are
larger than those given to the rest of the system. Several circuits are presented here to aide the
user in understanding and designing simple VMEbus interface circuits. All circuit examples
presented in this book have been built and tested.

Figure 2-11 shows a simple circuit for an 8-bit parallel I/O module with an
A16:D32:D16:D08(0) interface. This module illustrates some basic slave interfacing concepts
including address decoding, bus timing and use of the control signals. It can be used as a
building block for real time clocks, A/D converters, D/A converters and other simple I/O func-
tions.

Chapter 2 - Data Transfers 59 The VMEbus Handbook, 3td Edition

