Chapter 3 - Multiprocessing

114

The VMEbus Handbook, 34 Edition

Chapter 4
Interrupts

Interrupts gain the attention of a processor. They are used for task switching, message passing
and obtaining CPU time. For example, a peripheral (like a disk controller) can interrupt a pro-
cessor when it needs attention. After the peripheral generates an interrupt, the processor saves
its current state and jumps to a program called an interrupt service routine. There it services the

peripheral and then returns to what it was doing just before the interrupt.

Interrupts are analogous to reading the newspaper at home on your day off. Several things can
happen that could cause you to interrupt your reading. If the telephone rings you make a mental
note of where you are reading, and then answer the phone. When you are done with the call,
you return to reading the newspaper. In this case a peripheral (the telephone) needs attention,
causing you to stop what you are doing (reading the newspaper). You then perform a service
(answer the phone), and then return to what you were doing.

Multiple interrupt levels are available on VMEbus. These can be prioritized so that certain
events get serviced before others,

For example, in our newspaper analogy, assume that the telephone and the doorbell ring at the
same time. You may wish to answer the door before the telephone. In this case the doorbell
has a higher priority than the telephone.

Microcomputers prioritize interrupts the same way. This also gives the ability to ignore (mask
off) some interrupt sources, an important feature in some applications.

Chapter 4 - Interrupts 115 The VMEbus Handbook, 3™ Edition

The three bit address code A01-A03 notifies all interrupters of the priority level being acknowl-
4.1 VMEbus Interrupts edged. Table 4-1 shows how they are driven.

&
ioritized i hitecture. The seven levels are called IRQI_ -
VMEDbus has a seven level pne:;i“)rt'lzeisl'fﬁ }t)ci"%gt;iar%i;dules that generate interrupts, such as serial Table 4-1. Three bit code (AO1-A03) sed during inorrupt wckowledge ycle

* wi * having the high A
%ng&g;thuﬁgguncz}gni modu%c called an interrupter. Modules that service interrupts, such
as CPUs, do so with a functional module called an interrupt handler. Interrupt line 3 bit code
i t lines. Eachis being acknowledged | 402 | Aol
initi i , the interrupter asserts one of the seven interrupt reques
g?f?ﬁ%i ﬁgﬁ?gg“@;mi;%@m% and may be driven by any nggggfc;if? ﬁ?éi;ofg igltlk?é ‘ RQ7* 1 1 1
itor these signals and generate an Interrupt acknowi
?gﬁ:g: 1%231 interrupt rgqucst line can be monitored by a single interrupt handler. ; IRQ6* 1 1 0
) . . IRQ5* i 0 1
; i These include interrupt
i ledge cycle performs two important functions. ; ;
whivation ond & STATUS/ID (niemap vecor) ad cycle. To generate an intempt LT N O
first acquires the data transier bus. IRQ3* 0 1 1
aCkntOgéigie : y§%A%%a$@§rom theqinterrupter, All interrupt handlers must havefat %uz ; "
Ezester to acquire the data transfer bus. Interrupt acknowledge cycles that do not fetc ; IRQ2 0 1 0
STATUS/ID are not allowed. ~ IRQI* 0 0 1
. &
Once the bus has been acquired, the handler asserts address hnefezz«;@;f?ﬁiié?i;agiﬁgé
The assertion of IACK* notifies all modules thaé the Cﬁ?ﬁ ichigure 4-1. Address modifiers AMO-AMS are not driven during the interrupt acknowledge cycle. Handlers
cycle. A block diagram of the priority nterrupt bus is s must, however, assert IACK* during the cycle.
Slot 03 Slot 04 ; When AS* and DS0* (and/or DS1%) are asserted, the IACK* daisy-chain is driven by the Siot
Slot 01 Slot 02 . 01 IACK* daisy-chain driver. The daisy-chain propagates from module to module until it
CPU 1/0] 1o ‘ ; reaches the interrupter that initially requested the interrupt. The requester then places an 8, 16
Sy Modulk Module Module or 32 bit STATUS/ID (vector) onto data lines D00-D31, and terminates the cycle with
Controller © ; DTACK*. The STATUS/ID can be used by the interrupt handler to determine which interrupter
IRQS3 IRQS4 initiated the interrupt. This speeds up interrupts because the handler does not need to poll the
% % . % B g interrupt sources to determine which one requires service.
5 . e} Inter- Q
o é Handler 2 % g;cér 3 % rupter 3 77 CPU modules perform interrupt service routines in response to interrupt requests. The
IACK* %) % < < g ~ ; VMEDbus specification does not define what must happen during the interrupt service routine;
Daisy-Chain = - — ; this is completely user defined. This interrupt service routine may or may not require use of the
Driver |7, 2t o LA bus.
b To illustrate an interrupt acknowledge cycle, consider again the block diagram of Figure 4-1. If
IRQ1.24,5,6.7 RQ3* ¢ E f ; the interrupter located in slot 04 generates an interrupt, 1t initiates an interrupt acknowledge cy-
not. shown ; cle like the one shown in the timing diagram of Figure 4-2. Here the interrupt handler, located
v IACK* . ‘ in slot 02, monitors and responds to interrupt requests on level IRQ3*. When it monitors that
‘ IRQ3* is asserted it arbitrates for the data transfer bus. Once it has obtained the bus it asserts
LWORD*, IACK*, and places the level of interrupt it is acknowledging on A01-A03. The handler then
A01-A03, AS¥, asserts AS* and one (or both) data strobe. .
DSO*, DS1*
7) G Figure 4-2 shows a D08(0) interrupt acknowledge cycle. The levels of DS0* and DS1* indi-
D00-D3 cate the width of STATUS/ID that the handler expects to receive from the requester. 8, 16 or
éﬁ:&?ﬂnﬁ%}s o DTACK* 32 bit STATUS/ID words are allowed. Mnemonics describing the interrupter and handler
IACK ore

types, and the selection of DS0* and DS1*¥, are shown in Table 4-2.

The VMEDbus Revision B specification allowed only the D08(0) STATUS/ID. For this reason,
interrupters may provide fewer bytes than requested by the handler. Un-driven data lines are
pulled up to a logic '1' by the backplane termination networks.

Figure 4-1. Block diagram of the priority interrupt bus.

The VMEbus Handbook, 34 Edition Chapter 4 - Interrupts 117 The VMEbus Handbook, 3t Edition
116 €) |

Chapter 4 - Interrupts

IRQ3*

JIACK*

A01-A03

AS* T
DSO* =
JACKIN® (1) ~ -
IACKIN* (2)

IACKIN* (4)

D00-DO7

DTACK*
BERR*

Interrupt acknowledge ID code

STATUS/ID

Figure 4-2. D08(O) interrupt acknowledge cycle.

Chapter 4 - Interrupts

118

The VMEbus Handbook, 3t¢ Edition

Table 4-2. STATUS/ID options on interrupt acknowledge cycles.

Mnemonic | When appliedto a Means that

DO8(O) Interrupter Responds to 8, 16 and 32 bit interrupt ack-
nowledge cycles. These modules place an

8 bit STATUS/ID onto data lines DO0-D07.
They must monitor DS0* but not DS1¥ or
LWORD*, They must not drive D08-D31.

Interrupt handler | Generates 8 bit interrupt acknowledge cycles
and reads an 8 bit STATUS/ID on DO0-DG7.

D16 Interrupter Responds to 16 and 32 bit interrupt acknow-
ledge cycles. These modules place a 16 bit
STATUS/ID onto daia lines D00-D15.
They must monitor DS1* but do not drive
data lines D16-D31.

Interrupt handler | Generates a 16 bit interrupt acknowledge
cycle and reads a 16 bit STATUS/ID on
DOO-D15.

D32 Interrupter Responds to 32 bit interrupt acknowledge
cycles with a 32 bit STAUTS/ID on
D00-D31. These modules must monitor
DSO¥, DS1* and LWORD*,

Interrupt handler | Generates a 32 bit interrupt acknowledge
cycle and reads a 32 bit STATUS/ID on data
lines B00-D31.

4.1.1 The IACK* Daisy-chain

The assertion of IACK* and one or both of the data strobe starts the IACKIN*/IACKOQUT*
daisy-chain. The daisy-chain is driven by the slot 01 IACK* daisy-chain driver. As shown in
the timing diagram of Figure 4-2 (points A & B) it delays IACKOUT* until a data strobe has
been asserted for some minimum time. Its purpose is to allow back-to-back interrupt acknowl-
edge cycles, and to guarantee IACKIN* set-up times for interrupters.

The IACKIN*/IACKOUT* daisy-chain propagates from module to module until it reaches the
correct interrupter. When the responding interrupter receives IACKIN*, it places the
STATUS/ID onto the data bus, and terminates the cycle with DTACK*,

As Figure 4-2 shows (point C), IACKIN*/IACKQOUT#* from each VMEbus module must be
negated within some specified time after AS* is negated, regardless of the state of DSO* or
DS1*. This provision is made so that back-to-back interrupt acknowledges may be performed.
If not met, this timing parameter (40 ns.) could cause IACKIN* to remain asserted until the
start of another interrupt acknowledge cycle, and cause a system crash. When evaluating or
designing VMEbus modules, make sure that JACKOUT#* is negated within the minimum speci-
fied time after AS* is negated.

The VMEbus Handbook, 3t Edition

Chapter 4 - Interrupts 119

All commercial VMEDbus backplanes provide IACK* daisy-chain jumpers like those shown for
the bus grant daisy-chains (Chapter 3). These jumpers allow propagation of the daisy-chain if
one or more slots in the backplane are empty. For example, consider a 21 slot VMEDbus system
with only two modules: a slot 15 interrupter and a slot 01 handler. During the interrupt ac-
knowledge cycle there would be no way for the daisy-chain to propagate between slots 01 and
15 if the intermediate slots were empty, and the system would crash. To prevent this,
TACKIN* and JACKOUT#* at each empty slot should be shorted together with a backplane
jumper. This allows the daisy-chain to propagate in a normal fashion.

It is not necessary to place jumpers after the last module in the system. In our example,
jumpers do not have to be placed in slots 16-21.

Most vendors of VMEbus modules include a printed circuit trace between IACKIN* and
IACKOUT™* on all non-interrupter modules. This eliminates the need to install jumpers in the
backplane when modules are installed. The VMEbus specification does not require this trace,
however. If the vendor did not do this, the jumper must be installed if an interrupter resides
farther down the system. If you are unsure if a module has this trace refer to the manufacturer's
data sheet or use a ohm meter to determine if IACKIN* and IACKOUT* are shorted.

A daisy-chain jumper must not be installed in a slot where an interrupter resides. Since inter-
rupters assert IACKOUT*, the jumper may crash the system.

4.1.2 Interrupt Acknowledge Cycle Timing

In general, the interrupt acknowledge cycle will follow the same timing rules as read/write cy-
cles. This includes address rot as Figure 4-2 shows (point D). When DTACK* is asserted by
the interrupter, the handler may (but does not have to) release AS*, IACK* and A01-A03. The
interrupter, however, must continue to drive the valid STATUS/ID onto the data bus until the
handler negates both data strobes. When evaluating or designing VMEbus interrupters verify
that they do this.

4.2 Interrupter

The interrupter functional module generates interrupts to handlers. The levels that the inter-
rupter uses are given by the I(x) and I(x-y) mnemonics.

There are two classes of interrupters: release-on-acknowledge and release-on-register-access.
The mnemonics ROAK and RORA are used to describe them. The ROAK interrupter negates
its interrupt request line in response to an interrupt acknowledge cycle. The interrupt release is
shown in the timing diagram of Figure 4-3. The ROAK mechanism works with all handlers.

The RORA interrupter releases its request when the handler accesses an on-board register dur-
ing the interrupt service routine. As shown in Figure 4-4, the handler performs the acknowl-
edge cycle, but the interrupter does not immediately negate its request. Sometime during the
service routine the handler writes to a register on the interrupter. This causes it to negate the re-
quest.

The VMEbus Handbook, 3td Edition

Chapter 4 - Interrupts 120

TACKIN*

DS0*, DS1*

IRQ3*

Figure 4-3. Timing for ROAK release mechanism. The interrupt request, in this case
IRQ3*, is negated in response to the interrupt acknowledge cycle.

IACKIN*

Interrupt
~service routine”

DS0*, DS1*
Interrupt |
acknowledge "
IRQ3*

Figure 4-4. Timing for RORA release mechanism. The interrupt request, in this case
IRQ3%*, is negated when a register on the interrupter module is accessed by the handler.

The RORA release mechanism works with most CPU handlers because the CPU can access the
interrupter's internal registers during the service routine. Handlers, however, are not required
to have the capability to obtain the data transfer bus and do read/write cycles (they are only re-
quired to obtain the bus to read a STATUS/ID byte). If the handler cannot perform read/write
cycles it is impossible to force the RORA interrupter to release its interrupt. In these cases an
ROAK interrupter would have to be used.

The Revision B VMEDbus specification allowed only the ROAK mechanism. This caused prob-
lems with some VLSI chips (such as serial and parallel /O ports) and the RORA mechanism
was added in Revision C. For example, the MC68681 serial port IC generates an interrupt
from several sources. If two or more of these were to happen at the same time it would assert
and hold its interrupt request until all were serviced. This type of request is called a level sensi-
tive request because it is intended that a host CPU keep servicing interrupts as long as a valid
request is present. Before the RORA interrupter the logic necessary to interface this device to
the VMEbus was cumbersome (and often impossible) to build. A good rule of thumb is that the
ROAK release mechanism should be used only with edge sensitive interrupt requests.

The mnemonics used to describe the interrupt release mechanisms are summarized in Table 4-3.

4.2.1 Circuit Example - Interrupter

Figure 4-5 shows a circuit for a simple ROAK interrupter. It is a clock generator which pro-
duces an interrupt 100 times each second. It can be used for a real time clock source, a task
switching (heartbeat) timer or for any other timing purpose. The circuit can be easily adapted to
handle other applications where edge-triggered interrupts are needed.

Chapter 4 - Interrupts 121 The VMEbus Handbook, 314 Edition

Table 4-3. Mnemonics that describe interrupt release capabilities.

The When
Mrnemonic Applied Means that
o

RORA Interrupter Releases its interrupt request line when
some master accesses an on-board stams
or control register.

ROAK Interrupter Releases its interrupt request line when

I its STATUS/ID is read during the

interrupt acknowledge cycle.

This circuit illustrates some of the key concepts of VMEDbus interrupt generation. It shows how
to initiate an interrupt, why the local interrupt must be latched during the interrupt acknowledge
cycle, how to compare the acknowledge level, how to control timing and prevent race condi-
tions, how to place a STATUS/ID byte onto the bus and when to negate DTACK* and
IACKOUT*. The circuit also illustrates how the ROAK release mechanism works.

The 100 Hz time base is generated with a MM5369 timer U1 and a 3.57 Mhz crystal (television
color burst crystal in the US and Canada). The square wave output of U1 is latched by flip-flop
U3 when switch K1 is open. U3 drives any of the seven interrupt lines IRQ1* - IRQ7* de-
pending upon the state of jumper block K3. Figure 4-5 is set for level IRQ5%. The interrupt
lines are driven by an open-collector driver IC, U9. This is a 74F38 device that can sink up to
48 mA of current as required by the VMEbus specification.

After the interrupter generates the interrupt, the handler responds with an interrupt acknowledge
cycle. The interrupt handler initiates this cycle by placing the acknowledging interrupt level on
A0l - AOQ3, and asserts TACK*, AS* and the data strobe(s) DSO*/DS1*. The
IACKIN*/IACKOUT* daisy-chain then propagates from module to module until it reaches the
interrupter. When IACKIN* is asserted, the interrupter decides whether to acknowledge the
interrupt or pass the daisy-chain. The decision flow for this is shown in Figure 4-6.

The circuit of Figure 4-5 uses a 74ALS520 comparator (U8) and a 74LS08 AND gate (U2) to
determine when a valid interrupt acknowledge is in progress. At the falling edge of DS0* (on
every bus cycle) the state of the local interrupt request line IRQX is sampled using flip-flop U3.
When IACKIN* and DS0* are both asserted, a rising edge propagates through delay line U7.

If this interrupter initiated an interrupt, and the handler is issuing an interrupt acknowledge cycle
on the same interrupt level as was requested, the output of U2 is asserted (active high). Flip-
flops U4 and US5 latch the state of U2 at the rising edges of the 80 and 100 nanosecond taps of
U7. If the interrupter participates in the cycle, it places a STATUS/ID byte onto the data bus
and asserts DTACK*. If it does not participate in the cycle, then IACKOUT* is asserted.

Chapter 4 - Interrupts 122 The VMEbus Handbook, 34 Edition

{ U3, 74F74

30pF 1K
| Rk
5369
e Ul
5-50 pF
3.579545 Mhz
SYSRESET* [> %
=/
741508
TACKIN® [N ey
T~ . |__ DT14CBI10I
74LS08 ~U7 80 ns 100 1s
Dso* [o
U s, 1ar4 i
AS* [> ——
) U2 DS QF
U6, 74LS04 L/ |
74LS08 R Qb—
U4, 74F74
T4ALS520 z
Usg Q
R Qb
T
P Q¢
z U5, 74F74
s \F DS Q=
c_=) R Q

Figure 4-5. Simple ROAK interrupter circuit.

Chapter 4 - Interrupts 123

The VMEbus Handbook, 314 Edition

TAFDA4 ; Check for interrupt
— acknowledge cycle
U10
OE OF
%
S DTACK ——

interrupt reguest

ACK

Arbitration phase
Figure 4-5 (con't).

A metastable state can appear on the output of U3 because it latches the state of the interrupt re-
quest asynchronously to the interrupt acknowledge cycle (the interrupt request could happen
just as IACKIN* is driven in response to some other interrupter). The 100 nanosecond delay
provided by U7 allows this metastable state to damp out before the module asserts IACKOUT*
or DTACK*,

DTACK* and JACKOUT* are negated under different circumstances. At the end of the inter-
rupt acknowledge cycle, DTACK* is negated after the handler negates DS0*. TACKOUT*, on
the other hand, must be negated within 30 nanoseconds after AS* is negated. This permits
back-to-back interrupt acknowledge cycles.

_ that module can /
) supply? /

This circuit does not determine if it should participate in the interrupt acknowledge cycle until
IACKIN#* has been asserted. Faster versions could laich the interrupt request and determine '
whether the module participates in the cycle by monitoring IACK*. All metastable states could

damp out before the IACKIN* daisy-chain reaches the module. ; Clear interrupt reguest
(if ROAK). Place
- This module responds to all widths of STATUS/ID, but some modules return only 16 or 32 bit STATUS/ID onto Assert IACKOUT*
status IDs. If it were designed to return a D16 or D32 STATUS/ID, and the interrupt acknowl- VMEbus and terminate until AS* negated.
edge cycle required a DO8(O) STATUS/ID, then the module would not respond to the cycle and with DTACK*,
would pass the IACK* daisy-chain. The flowchart of Figure 4-6 shows the decision tree used
by this interrupter.

When evaluating or designing modules with interrupters, verify that race conditions do not oc- et
cur on the JACK* daisy-chain. Just as with requesters, interrupters must have an internal Wait until data strobes
arbiter. In the case of the interrupter, the arbiter must determine whether to return a are negated.

STATUS/ID or assert IACKOUT*. In Figure 4-5 this arbitration is provided by the delay line
and flip-flops U4 and US.

Figure 4-6. Decision flow diagram for an interrupter.

Chapter 4 - Interrupts 124 The VMEbus Handbook, 314 Edition ~ Chapter 4 - Interrupts 125 The VMEbus Handbook, 374 Edition

4.2.2 Circuit Idea - The MC68153 Bus Interrupter Module

When a sophisticated interrupter is needed, the MC68153 Bus Interrupter Module (BIM) IC
from Motorola can be used. This device is a four channel interrupter for VMEbus. The block
diagram of Figure 4-7 shows it configured as a slave in the short I/O address space. VMEbus
masters can program the device using the registers shown in Figure 4-8. This programmability
eliminates the need for jumpers on the module.

ROI*-IRQ7* P el o IRQ1* -
DTACK* . e DTACK*
Interrupt =
uests
—& INT2* g
B ppe DO-D7 & D00 - DO7

- INTAE* - AQ1-AlS
Al-A3 | S
3 8 _| AMO-AMS
Cs* g _| WRITE*
v To local
interrupters that TACK® 'E — IACK*
provide a R/W £ I As*
STATUS/ID byte % - DSO*
SYSRESET*
CLK |- g - SYSCLK*
IACKIN* g TACKIN®
TACKOUT* IACKQUT*
MC68153 BIM VMEbus

Figure 4-7. Block diagram of an interrupter using the MC68153 Bus Interrupter
Module. The device is shown as a slave in the short I/O address space.

Interrupts are generated by asserting a local request on INTO*-INT3*. The MC68153 BIM
monitors these and asserts a VMEDbus interrupt request on IRQ1* - IRQ7*. The level at which
this interrupt is generated depends upon how the control register (bits DO-D2) for that channel
are set. Each interrupt may be disabled by clearing bit D4 of the associated control register.

When the MC68153 monitors an interrupt acknowledge cycle IACK* and IACKIN* asserted)
it responds by providing an 8§ bit STATUS/ID or by passing the IACKOUT* daisy-chain to the
next module. If it participates in the cycle it will respond in one of two ways. How it responds
depends upon the state of the X/IN bit (D5) in the control register. If it is programmed for an
external STATUS/ID it will place the device number (0-3) onto INTALO-INTALI1 and assert
INTAE*. This forces the interrupting peripheral to supply its own STATUS/ID byte. If pro-

The VMEbus Handbook, 3rd Edition

Chapter 4 - Interrupts 126

grammed for an internal STATUS/ID it will place the byte in the vector register onto the data
bus.

The MC68153 automatically clears its interrupt request during the interrupt acknowledge cycle.
It is classified as an ROAK interrupter.

The external decoder/control logic shown in Figure 4-7 must guarantee some bus timing for the
MC68153. For example, since the MC68153 has no AS* input, IACK* must be qualified in
the external logic. This external logic must guarantee that IACKIN*-JACKOUT* timing is cor-
rect. If the device is to reside in the slot 01 backplane position an external IACK* daisy-chain
driver must also be added.

MC68153 Register Set
Address .
23T A3 T Al Description
0 0 0 Channel 0 Control
0 0 1 Channel 1 Control
0 1 0 Channel 2 Control
0 1 1 Channel 3 Control
1 0 0 Channel 0 Vector
1 0 1 Channel 1 Vector
1 1 0 Channel 2 Vector
1 1 1 Channel 3 Vector
D7 DO Vector Register
D7 = Control Register
IRAC, L2 ' L1} LO
["F [FAC IX/IN] IRE] ‘ L] L1} j(eachchaml)
== Interrupt request level
disabled, 1-7
— Interrupt Auto Clear:

0 No auto clear
1 IRE cleared during acknowledge

=== Interrupt Enable:
0 Disabled
1 Enabled

== External/Internal response:
0 Respond with vector
1 External response with INTAE*

Flag Auto Clear:
0 No auto clear
1 Flag (bit 7) cleared during acknowledge cycle

Flag bit, used as generic semaphor in multiprocessor sysiems.
Figure 4-8. MC68153 Programmer's model.

Chapter 4 - Interrupts 127 The VMEbus Handbook, 3'd Edition

4.2.3 Circuit Idea - The SCB68154 Interrupt Generator

The SCB68154 interrupt generator IC allows local masters to initiate VMEbus interrupts. As
shown in the block diagram of Figure 4-9 a local master, such as a 68000, communicates with
the device over a private data bus. The local master initiates interrupts on any level by writing
to the SCB68154 internal control registers. This device was not intended to be used with slave
modules since it does not have interrupt request inputs. It is useful for communication and
message passing between processors.

ml_w o y,@7 = LD1-7 le*_ —
IRQT* D IRQ1* - IRQ7*
DTACK* [LDTACK* R
DTACK* e g DTACK*
Bit O user —
LDS* - supplied Ny
A01-A23 L BDI1-BD7 {td ® D00-DO7
CSD§* 7 =
~
RS BUFEN* ?
Al-A3 | f3 Al-A3
Local Reset = RRSET* et DSO*
DS* | = 1 AS*
TACK* | % J IACK*
TACKIN® & @) — TACKIN*
TACKOUT* | TACKOUT*
Local Master SCB68154 VMEDbus
680X Interrupt
Generator

Figure 4-9. Block diagram of the SCB68154 interrupt generator IC.

Before generating an interrupt the local master sets up the interrupt vector register shown in the
programmer's model of Figure 4-10. This register is used both to latch the STATUS/ID that
will be sent during the interrupt acknowledge cycle and to enable interrupts. Only the highest
five bits (D3 - D7) of the STATUS/ID are latched into the register. Bits D2 and D1 are set to
the level of address lines AO2 and AQ1 during the interrupt acknowledge cycle. This means
that the STATUS/ID byte will vary depending upon what level the interrupt is generated. Bit
DO is set by hardware external to the SCB68154.

Once the interrupt vector register is set an interrupt may be triggered by writing to the appropri-
ate bit in the interrupt request register. When an interrupt has been initiated, the local master
should not change the interrupt vector register as this could cause the STATUS/ID to change
during the acknowledge cycle. The master can check the status of an interrupt by reading inter-
rupt request register.

The VMEbus Handbook, 31d Edition

Chapter 4 - Interrupts 128

D7 DO
L L 1 1 1 1 1=| Interrupt vector register (RS = 0)

e yd
v L
Interrupt enable:

0 Disabled
1 Enabled

—— Clear interrupt requests:
0 Nochange
1 Clear interrupt requests

High order bits of STATUS/ID
Bits 2 and 1 of STATUS/ID = VMEbus A3 and A3
respectively. Bit O of STATUS/ID set via hardware.

D7 Do

E 5 E E i E j E“’“’E Interrupt request register (RS = 1)
AN

V4
> Lm Nonexistent bit

L

Level 1-7 interrupt requesis
Write:

0 No change

1 Request interrupt
Read:

0 No interrupt pending

1 Imterrupt pending

Figure 4-10. Programmer's model for the SCB68154 Interrupt Generator IC.

The SCB68154 automatically clears its interrupt request during the interrupt acknowledge cycle.
It is classified as an ROAK interrupter.

When designing circuits using the SCB68154, care should be taken to insure proper timing of
the JACK* input and the IACKOUT* daisy-chain driver. As with the MC68153, IACK* must
be qualified with AS*. JACKOUT* must also be negated less than 30 nanoseconds after AS*
has been removed. The SCB68154 was designed to negate IACKOUT* only after DSO* is
negated. The control block in Figure 4-9 should incorporate this fix. In addition, the circuit
does not provide the IACK* daisy-chain driver.

4.3 TACK#* Daisy-chain Driver

The IACK* daisy-chain driver was first introduced in the Revision C VMEbus specification and
permits back-to-back interrupt acknowledge cycles. It is located in slot 01 and is part of the
system controller. Under the Revision B specification the handler was not required to negate
IACK* between consecutive interrupt acknowledge cycles, and the interrupt acknowledge
daisy-chain would not always get negated between cycles (IACK* is connected to IACKIN*
before slot 01 of the backplane). The net result could be a crashed system. This timing is
shown in Figure 4-11.

Chapter 4 - Interrupts 129 The VMEbus Handbook, 374 Edition

AS* T

DSs0*, DS1*

TIACK* =%

TACKIN* ™
(Slot 01)

IACKOUT* ~
(Slot 01)

TACKOUT* negated =~
between cycles

Figure 4-11. Timing diagram showing back-to-back interrupt acknowledge cycle.
Without an JACK* daisy-chain driver IACKIN*/IACKOUT* would not be negated
between cycles and could crash the system.

The IACK* daisy-chain driver must be located in the Slot 01 backplane position. When a
VMEDbus board maker claims to have a system controller on a module, it should have an IACK*
daisy-chain driver circuit.

The IACK* daisy-chain driver also guarantees that IACKIN*/IACKOUT* is negated for a
minimum time between cycles, and that IACKIN*/IACKOUT* will not be asserted until after
the data strobes have been asserted. This simplifies the design of interrupters.

Most interrupt handlers, including MC680XX based CPU modules, negate IACK* between

two interrupt acknowledge cycles, and therefore do not require the IACK* daisy-chain driver.

It is necessary, however, that it be used in all systems since most manufacturers do not specify

whether or not their modules produce back-to-back acknowledge cycles. As more VMEbus

ixfxoddll}.les are developed they may take advantage of this cycle to speed up multiple interrupt
andling.

4.4 Circuit Example - IACK* Daisy-chain Driver

A simple circuit for an JACK* daisy-chain driver is shown in Figure 4-12. 40 nanoseconds
after either data strobe (DSO* and/or DS1%) is asserted, flip-flop U2 latches the state of
IACKIN*. If the cycle is an interrupt acknowledge cycle then IACKOUT* is asserted until
AS* is negated. If it is not an interrupt acknowledge cycle, then IACKOUT?* is not asserted.

If the circuit resides on a module located in slot 01, then S1 is configured as shown in Figure 4-
12. If in any other slot, it should be configured to pass the IACKIN*/IACKOUT* daisy-chain.

The circuit of Figure 4-12 is part of the simple system controller circuit of Figure 3-3.

The VMEbus Handbook, 3td Edition

Chapter 4 - Interrupts 130

AS* SLOT 02-21
" U1, 74LS04 o IACKOUT*
4 U2, 74F74
TACKIN* [¢—{D s Q S1
SLOT 01
U4
, 4
DSO* [N, (Delay Line (Kappa)) o> __|
DS1* | ' DTI4CBI01

74LS00
Figure 4-12. Simple circuit for an IACK* daisy-chain driver.
4.5 Handler

Interrupt handlers can be designed to accept interrupts on levels one to seven. While any num-
ber of interrupters may reside on any level, only one interrupt handler may monitor each level.

Table 4-4 shows the mnemonics describing the handler options. Interrupt handlers with the
mnemonic IH(x) can monitor a single level of interrupt. For example, a module that monitors
level 5 would be called an IH(S) handler. When more than one level is handled the TH(x-y)
mnemonic is used, where x and y are a range of interrupts. For example, a handler which
monitors levels 2, 3, 4 and 5 is called an IH(2-5) handler.

Table 4-4. Interrupt handler options and their mnemonics.

Mnemonic Description

Monitors and generates interrupt acknowledge cycles

THE) in response to interrupt requests on level IRQx.,
Monitors and generates interrupt acknowledge
HE-y) cycles in response to interrupt requests on levels

IRQx to IRQy.

By strict interpretation of the VMEbus specification, a IH(x-y) handler can only monitor con-
secutive interrupt request lines. For example, it may monitor levels 2, 3, 4 and 5 but may not
levels 2, 3, 5 and 6. In most cases it can be done, however. The only reason for this require-
ment is so the IH(x-y) mnemonic will apply in all situations.

4.5.1 Circuit Example - Handler for a MC680XX CPU Module

An example of a VMEDbus interrupt handler is shown in the block diagram of Figure 4-13.
Interrupts IRQ1* - IRQ7* are encoded to a three bit code (IPLO* - IPL2*) for use by the

Chapter 4 - Interrupts 131 The VMEbus Handbook, 37d Edition

MC680XX microprocessor. When the MC680XX processor monitors a pending interrupt on
these inputs, it initiates an interrupt acknowledge cycle.

VMEbus ‘§
IRQ1* - IRQ7* g IPLO*-IPL2* X
& 7 g & 3 %
&
VIACK*
Data transfer {device wanis bus) »
2
arbigration bus | 3
& granted bus
o IACK* .
< AOL-AD3 Ep Address
D00-DO7 5 Data
DTACK*, BERR E Local DTACK*, BERR¥*

Figure 4-13. Block diagram of an interrupt handler on an MC680XX based CPU
module. Portions have been omitted for clarity.

During the interrupt acknowledge cycle VIACK* is asserted by a decoder. After VIACK* is
asserted, the local MC680XX processor expects to fetch a STATUS/ID byte from VMEbus.
Before the byte can be fetched, however, VMEbus mastership must first be obtained using the
bus requester. In most cases VIACK* is 'or'ed with off-board memory access requests. For
simplicity this logic is not shown.

Once VMEbus ownership is obtained, an interrupt acknowledge cycle is generated. During the
interrupt acknowledge cycle the local master asserts IACK*, sets A01-A03 to the level that is
being acknowledged, and asserts AS* and DSO*. The interrupter then places the STATUS/ID
byt§ onto the bus and asserts DTACK*. The local processor reads the byte and terminates the
cycle.

When evaluating or designing interrupt handlers be careful with the 7 to 3 priority encoder be-
tween IRQ1* - IRQ7* and IPLO* - IPL2*. A proven solution is the circuit of Figure 4-14.
Here a PAL16L8B is programmed as shown in the truth table of Table 4-5 and the equations of
Figure 4-15. This circuit has a jumper block which allows programming of the interrupt levels
to be handled. The example is set to accept interrupts on levels IRQ1*-IRQ5%, and to ignore
levels IRQ6* and IRQ7*. A common mistake is to design the jumper block with a pull-up re-
sistor as shown in the inset of Figure 4-14. The pull-up resistor violates the maximum input

The VMEbus Handbook, 34 Edition

Chapter 4 - Interrupts 132

low current allowed for IRQ1* - IRQ7*. Chapter 6 describes the electrical characteristics of the
bus interface in more detail.

%
$Q7 w IPL2*
in . o PLI*
Q & IPLO*
IRQ4* =
IRQ3* 2 To MC680XX
RQ2* A interrupt
IROQ1* handler
See inset
Example of poor design where
pull-up resister violates
VMEbus loading rules
RQ4* [To encoder input

Figure 4-14. Simple VMEDbus priority encoder used with MC680XX handlers.

Table 4-5. Truth table for PLD shown in Figure 4-14.

Truth Table
LEEEEEL|S S
TEEEECIEEE
111111 1}111
1111110]110
1111 xl101
11110XX|100
11 10XXX|011
11 0XXXX|010
10XXXXX|001
0XXXXXX|000

A second problem has become more prevalent as faster microprocessors come onto the market.
This problem is a result of the sampling mechanism used by the MC680XX interrupt inputs.
Consider the timing waveforms for the MC68020 IPL0* - IPL2* inputs shown in Figure 4-
16(a). Since the IPLO* - IPL2* inputs are completely asynchronous to the microprocessor
clock, they must be synchronized before its internal logic can use them. The MC68020 does
this by clocking the inputs on two consecutive negative clock edges. In addition to synchroniz-

ing the inputs, the microprocessor also verifies that the same interrupt level is pending on two

Chapter 4 - Interrupts 133 The VMEbus Handbook, 37d Edition

consecutive clocks. This is because priority encoders of the type shown in Figure 4-14 take
time for their outputs to settle. This settling time is shown in the timing waveform of Figure 4-
16(a). Here two interrupt requests occur on levels IRQ2* and IRQ5*. The first negative clock
latches the IRQ2* input, and the second IRQ5*. Since they were not the same, the MC68020
rejects the request until the next negative clock edge. In general this clocking mechanism works
quite well. It can cause problems, however, if a slow priority encoder is used.

TITLE INTERRUPT ENCODER

PATTERN VHO005.PDS

REVISION A

AUTHOR WADE PETERSON

COMPANY (C) 1588 WADE PETERSON, ALL RIGHTS RESERVED
DATE MARCH 27, 1988

CHIP ENCODE PAL16LS

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQL NC NC GND
OE IPLZ IPL1 IPLO NC NC NC NC NC VCC

EQUATIONS
/IPL2 = /IRQ7

+ IRQ7 */IRQ6

+ IRQ7 * IRQ6 */IRQO5

+ IRQ7 * IRQ6 * IRQ5 */IRQ4
/IPL]1 = /IRQ7

+ IRQ7 */IRQ6

+ IRQ7 * IRQ6 * IRQ5 * IRQ4 */IRQ3

+ IRQ7 * IRQ6 * TRQ5 * IRQ4 * TRO3 */IRQ2
/IPLO /IRQ7

IRQ7 * IRQ6 */IRQS
IRQ7 * IRQ6 * IRQ5 * IRQ4 */IRQ3
IRQ7 * IRQ6 * IRQS IRQ4 * IRQ3 * IRQ2 */IRQ1

+ +)
o4

Figure 4-15. Logic equations for the PLD shown in Figure 4-14.

When an encoder such as that shown in Figure 4-14 changes states it can go through interme-
diate transient states. In our example where IRQ5* is asserted just after IRQ2*, IPLO* -
IPL2* can occupy the IRQ3* state shown in Figure 4-16(b). If the encoder were slow it could
occupy this intermediate state for some time and trigger a level three interrupt as shown in
Figure 4-16(c). The result would be a random system crash (probably rare) when a level three
interrupt acknowledge cycle occurs.

The fix for this potential problem is to use a fast encoder. If we were to use a 25 Mhz
MC68020 this means that we would need an encoder that would change states within 40
nanoseconds (1/25 Mhz = 40 ns). If this requirement is met we should have no problems with
our circuit.

While the MC68020 clocks the IPLO* - IPL2* inputs on every negative edge, the MC68000
does so on a positive and negative edge. Since this represents twice the sampling frequency of

Chapter 4 - Interrupts 134 The VMEbus Handbook, 314 Edition

the MC68020 a 12.5 Mhz MC68000 would also need a 40 nanosecond encoder. The situation
is exacerbated if the microprocessor clock duty cycle degrades.

When evaluating or designing VMEbus interrupt handlers, be sure to check them for the wire-or
glitch problem. The wire-or glitch was described in Chapter 3, and comes from using open-
collector (wire-or) logic. MC680XX microprocessors guard against this by double clocking
their inputs. When using other microprocessors on VMEbus they should be evaluated for com-

patibility with wire-or interrupt logic.

RQI*-IRQ7*

IPLO* _H)Lz 5 B

68020 CLK

IPLO*.IPL2* = 010 IPLO*-IPL2* = 101
(101 valid, 010 ignored)

(a) Normal IPLO*-[PL2* transitions generate valid interrapt.

IRQ2* Transient IRQS*
IRQ3*

(b) One scenario of IPLO*-IPL.2* transition between 010 and 101
generates unwanted level 3 interrupt request.

IRQI*IRQT*

1P LO*_IPLZ* -

010 011

68020 CLK

PLO*-TPL2* = 010 KPLO*-IPLZ* 2 011
(eransient intermediate staie)

(c) A slow encoder with a fast MC68020 may cause a system crash
due 1o transient interrupt request,

Figure 4-16. Poor choice of priority encoder may cause problems on a MC680XX pP.

The VMEbus Handbook, 3rd Edition

Chapter 4 - Interrupts 135

4.5.2 Circuit Idea - The SCB68155 Interrupt Handler

VMEbus handler circuits can be simplified using the SCB68155 interrupt handler IC. This de-
vice allows up to seven VMEbus, six local and one non-maskable interrupt to be handled by a
microprocessor. Figure 4-17 shows one way to use the SCB68155. Table 4-6 shows how the
interrupt inputs are prioritized.

Local Maste P Local address bus
T
68000 SCB68155
LRQ1*- P Local interrapt
DO0-DO7 B DO0- [RrQ6* “6 requests
bo7 LIACK#* Local acknowlege
FCO-FC2 = CSDS*
IACKDS*
19 1 —
ASF L RESET#* — Local reset
_ 10 Mhz
VMEbus
74L.S08
AD1-A31 Al-A3 pamae ACFAIL*
AN SYSFAIL*
R/W B R/W RO1%. .
DTACK* L B LDTACK*
% BIACK* : £ IACK#
From VMEDbus d
DTACK cgmrol IPLO®. oA
% i
Grant from reguester

Figure 4-17. Block diagram showing a typical SCB68155 configuration.
Table 4-6. Prioritization of SCB68155 interrupt inputs.

Level
Interropt Interrupt priority level acknowledged
request level outputs. by local master.

PL2* | IPL1* | IPLO* | A03 | A02 | A0l
NMI*, IRQT* 0 0 1 1 1
LRQ6*, IRQ6* 0 0 1 1 1 0
LRQS5*, IRQ5* 0 1 0 1 0 1
LRQ4*, IRQ4* 0 1 1 1 0 0
LRQ3*, IRQ3* 1 0 0 0 1 1
LRQ2%, IRQ2* | 1 0 1 0 1 0
LRQ1*, IRQ1* 1 1 0 0 0 1

Chapter 4 - Interrupts 136 The VMEbus Handbook, 3td Edition

The circuit of Figure 4-17 shows the SCB68155 connected to a local 68000 master. The
SCB68155 is controlled via an eight bit I/O interface using D00-D07. This enables the local
master to configure the device using the internal registers shown in Figure 4-18. VMEbus in-
terrupts on IRQ1* - IRQ7*, local interrupts on LRQ1* - LRQ6* and the non-maskable interrupt
NMI* can be enabled or disabled via the internal registers.

D07 D00

loloJojoJol | | | pointer Register RO (write only)
L

Pointer register to R1 (write only):

000 none 100 CR4

001 CRI1 101 CRS

010 CR2 110 CRé

011 CR3 111 none
DO7 D00 Control Register R1 (read/write)
loJojJoJolo] | 1 | oneforeach LRQninput Pointed

Lto by register RO. (A3,A2,A1 = 001)

LRQOn active state:
0 active low
1 active high

e LRQn edge/level sensitive
0 Ilevel sensitive
1 edge sensitive

—= L.RQ n vector enable
0 vector disabled
1 vector enabled

D07 D00
T T T T IN2InNiINo0] Vector Register R2 (read/write)
< y 7 (A3,A2,A1 =010)

Lm LRQn vector output if vector enabled in R1.
During register I/O bits N2, N1 and NO are read
as zeros. Vector retumed during acknowledge
cycle is returned with NO-N2 as follows:

001 LRQI1 101 LRQS
010 LRQ2 110 LRQ6
011 LRQ3 111 NMI
100 LRQ4

Figure 4-18. SCB68155 programmers model.

Chapter 4 - Interrupts 137 The VMEbus Handbook, 37d Edition

LRQ Mask Register R3 (read/write).

ﬁ E] } Allows local interrupts to be masked

and NMI* vector mode to be selected.

(A3,A2,A1 =011)

NMI* vector enable (1 = enabled)
== LRQ mask. Bit number corresponds to LR Q
number. For example D03 -»> LRQ3%. (1 = enabled)

= NMI mask (1 = enabled).

pog LRQ Status Regisier R4 (read only).

DO7
E E E E E i 0] Local interrupts can be polled. Each
< ~ bit is set if an interrupt is pending.
R (A3,A2,A1=100)

L—w LRQ status. Bit number corresponds to LR Q
number. For example D03 -> LRQ3*. (1 = interrupt
pending)

e NMI* status (1 = interrupt pending)
DO7 poo [RQ Mask Register RS (read/write).
E E E i E B 0 ! Allows local interrupts to be masked
< ~ and NMI* vector mode to be selected.
(A3,A2,A1=101)
Lm IRQ mask. Bit number corresponds to system IR Q

number. For example D03 > IRQ3*. (1 = enabled)
DO7 poo IRQ Status Register R6 (read only).
E E E a E E 0 } Local interrupts can be polled. Each
< bit is set if an interrupt is pending.

Chapter 4 - Interrupts

(A3,A2,A1 = 110)

Lm- IRQ status. Bit number corresponds to system IR Q

number. For example D03 -> IRQ3*. (1 = interrupt
pending)

Figure 4-18 (con't).

138 The VMEbus Handbook, 34 Edition

DO7 D00 Register R7. Most recent interrupt
lololofol | | | | acknowledged (read only).
N —— (A3,A2A1=111)

Status bits indicating most recent interrupt
acknowledged:

0000 none 1000 none

0001 IRQIL* 1001 LRQ1*

0010 IRQ2* 1010 LRQ2*

0011 TRQ3* 1011 LRQ3*
0100 IRQ4* 1100 LRQ4*

0101 IRQS5* 1101 LRQS5*
0110 IRQG* 1110 LRQe*

0111 IRQ7* 1111 NMI*

Figure 4-18 (con't).

Local interrupts LRQ1* - LRQ6* can be programmed to respond as either edge or level sensi-
tive inputs. They can also be active high or active low. In addition each input can respond with
either an internal or external STATUS/ID byte. Auto-vectored interrupts (which do not return a
STATUS/ID) are not supported. The non-maskable interrupt NMI* is treated as the highest
priority local interrupt, and is negative edge sensitive only.

VMEDbus interrupts IRQ1* - IRQ7* are active low, level sensitive only, and must provide an
external STATUS/ID byte during their interrupt acknowledge cycles.

When a local or VMEDbus interrupt is generated, the SCB68155 prioritizes and notifies the local
master using IPLO* - IPL2*. These signals are compatible with all MC680XX type devices.
In response to the interrupt request, the local master generates an interrupt acknowledge cycle.
It then asserts IACKDS* (to the SCB68155) and places the interrupt level to which it is re-
sponding on AO1 - A03. If the current acknowledge cycle is in response to a local interrupt the
device will assert LIACK* (Local Interrupt Acknowledge). Local interrupt requestors must
then decode address lines AQ1-A03 accordingly. If the particular interrupt request being ser-
viced was so programmed, the SCB68155 will then place an eight bit STATUS/ID byte onto
data lines DO0-DO7 and assert DTACK*. This will notify the local master that it can latch the
STATUS/ID byte and continue with the interrupt service routine. If the device was pro-
grammed to respond with an external STATUS/ID byte, it is the responsibility of the local inter-
rupter to place the STATUS/ID onto DO0-D07 and assert DTACK*,

If the interrupt acknowledge cycle is in response to a VMEbus interrupt, the SCB68155 will re-
spond by asserting BIACK* (Bus Interrupt Acknowledge). This notifies external logic that the
VMEDbus acknowledge cycle should take place. Note that Figure 4-17 shows BIACK* going to
the local bus requester. This is because the module must first acquire VMEbus mastership be-
fore it can get the STATUS/ID byte.

Programming the SCB68155 is done with the registers of Figure 4-18. Local interrupt requests
are controlled using registers RO - R4. During the initialization phase registers RO - R2 must
first be configured. RO and R1 select the active state (high or low), edge or level sensitivity and
STATUS/ID source. Register RO is used as a pointer to select a local interrupt request level.
The configuration bits for that particular input are then selected using Control Register R1.

Chapter 4 - Interrupts 139 The VMEbus Handbook, 374 Edition

If the SCB68155 was configured to generate an internal STATUS/ID byte in register R1 the
value of the STATUS/ID for that level is placed into register R2. In this register, however, the
pointer register is not used. When writing to R1 the lower three bits of the STATUS/ID should
contain the level of interrupt request. The five high bits should contain the rest of the

STATUS/ID byte.
Registers R3 - R6 contain interrupt masks and interrupt status for each request level.
Register R7 holds the state of the last interrupt acknowledged.

For more information about the SCB68155 please refer to its Technical Data Sheet available
from Signetics.

4.6 References
Motorola Inc. "MC68153 Bus Interrupter Module Technical Data Sheet."

Signetics Inc. Microprocessor Data Manual, 1986.

The VMEbus Handbook, 3td Edition

Chapter 4 - Interrupts 140

Chapter 5
Utility Functions

The Utility Bus is used for system initialization, periodic timing and power failure. It's really
not really a bus, but the VMEbus specification calls it one.

5.1 System Clock

SYSCLK is a general purpose 16 Mhz clock signal. It has no relationship to other bus timing,
and can be used for any purpose. Typical uses for SYSCLK include DTACK* generators, bus
timers, memory refresh circuits, serial I/O time bases and synchronous state machines.

SYSCLK is generated by the slot 01 system controller, and can be used by any module. It is
never turned off, even during system reset.

5.1.1 Timing

Figure 5-1 shows SYSCLK timing. At best it has a 50% duty cycle, but this can vary between
40% and 60%. Because SYSCLK is driven over the backplane, its wave shape may not always
be ideal. Capacitance and inductance of the backplane, impedance mismatches and bus loading
will cause distortion of the waveform as Figure 5-2 shows. SYSCLK is allowed to vary as
much as 1.6% from its ideal frequency of 16 Mhz (over voltage and temperature).

The duty cycle of SYSCLK can vary between 40% and 60%, and care should be taken on cir-

cuits using both the rising and falling edges. When evaluating or designing VMEbus modules
that use SYSCLK, make sure they can can tolerate the entire range of duty cycle.

Chapter 5 - Utility Functions 141 The VMEbus Handbook, 374 Edition

