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5 TRACKING AND ALIGNMENT 
 
During first pp production run the HADES spectrometer was equipped for the 

first time with an almost complete outer tracking system (four MDC chambers in four 
sectors, three chambers in the remaining two sectors). 

One of the main goal of this experiment was to collect data with pp elastic 
scattering, in order to perform a full characterization of the tracking system, to check 
and improve the alignment of the chambers, and in particular to evaluate momentum 
reconstruction  resolution. 

 Indeed a high momentum resolution is mandatory to do exclusive η 
identification, which requires precise MDC calibration and detector alignment. For this 
purpose several alignment procedures have to be developed, and tracking algorithms 
which reconstruct momentum by using even the information coming from the outer 
chambers. 

In this chapter it will be presented the status of HADES tracking precision, 
evaluated in January 2004 experimental data. 

 
Figure 5.1 – Scheme of a two-body collision in the laboratory frame. 
  

5.1 Elastic kinematics 

The pp elastic channel is a wonderful tool to study the detector alignment and its 
tracking capability. Indeed in elastic scattering the kinematics of the reaction is fixed, 
and so the relationship between angular variables of proton pairs is well fixed. From the 
information of the polar angle is even possible to have an estimation of the particle 
momentum, and so to evaluate the momentum reconstruction resolution. 

Figure 5.1 shows a scheme of a two-body collision, like pp elastic scattering, in 
the laboratory frame. In the figure we have a projectile with momentum pproj hitting the 
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target particle which is at rest frame (ptarg ≡ 0). After the collision the two outgoing 
particles will be emitted in the same reaction plane (the blue one), with emission polar 
angles θ 1 and θ2 and with momenta p1 and p2; the two particles are identical so it is not 
possible to distinguish projectile and target after the collision. 

The first kinematical constraint comes from the fact the two particle trajectories 
must lay on the same reaction plane, and it imposes the condition on azimuthal angles 
(φ1 and φ2): 

 

°=− 18021 φφ         (Eq.  5-1) 

 
Furthermore, considering that the two particles have the same rest mass, from 

relativistic calculation it is possible to find the relationship between their polar angles 
(θ1 and θ2): 
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where γCM is the γ Lorentz factor calculated in the centre of mass frame. 

In elastic scattering there is a direct relationship between emission angle and 
particle momentum; by doing some other relativistic calculations we can obtain: 
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From the last equation, if we are able to measure correctly the θ polar angle, we 

can predict the theoretical momentum the particle should have, and to compare this 
value with the one given by tracking algorithms. In this way we can estimate 
momentum resolution of the tracking system. 

But the main purpose of the HADES spectrometer is to plot invariant mass 
spectra of dilepton pairs, so we are interested much more in invariant mass resolution 
respect to momentum one. 

In relativistic notation, we can express the four-momentum pi of a particle such 
as: 

 

( )iii pEp r,= ; 22 mpE ii +=      (Eq.  5-4) 

 
where Ei is the total energy of the particle, ipr  its momentum vector and m its rest mass. 
If we have a system made by two particles, their invariant mass M will be given by: 
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If we are able to select a proton elastic pair, measuring the particle momenta and 
angular variables we can estimate its invariant mass, and compare the obtained value 
with the initial state one. 

Table 5-1 shows a summary of the kinematical properties of proton elastic 
scattering pairs, for the two energies which were used in January 2004 experiment. 

No field data were taken at a proton incident kinetic energy of 2 GeV, to perform 
alignment using straight tracks, while the field data were taken at 2.2 GeV. 

 
 

 No field Field 

Momentum (proj) [MeV/c] 2784 3000 

Total energy (proj) [MeV] 2938 3143 

Kinetic energy (proj) [MeV] 2000 2205 

Invariant mass [MeV/c2] 2697 2768 

γCM 1.4372 1.4747 

1/γ2
CM 0.4841 0.4598 

Table 5-1 – Summary of the kinematical properties of proton elastic scattering 

 

5.2 Alignment strategy 

Each MDC chamber provides an information about the position and the trajectory 
direction of the particle which hit it, in the chamber coordinate frame1, by fitting time 
signals coming from different wire layers. 

The particle trajectory before and after the magnetic field is reconstructed by 
spatial correlation of different chambers belonging to the same sector, and after the 
particle momentum is evaluated. In this case the position information of the single 
MDC needs to be converted into the laboratory coordinate system, and it is important to 
know the absolute position of each chamber with high precision to obtain high 
precision in the trajectory reconstruction. 

We have developed alignment procedures based on photometric measurement 
and cosmic data for the inner chambers, and on straight track reconstruction in run 
without magnetic field for the outer ones. 

Photometry is a photo-camera based method to survey objects in three 
dimensions. For this purpose a 8 Megapixel mirror reflex camera with a special 20 mm 
USM wide-angle-lens was used, to make high resolution pictures of large areas from 
short distances. 

First the camera has to be calibrated, by photographing from all sides a special 
array of dots whose positions are fixed and known. After same special markers are 
glued on the chambers, in detector reference positions. The software can make a fit to 

                                                 
1 The chamber coordinate frame is defined by the middle plane of each chamber (xy plane) and its 

central point (origin). 
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the marker pattern and then calculates the centre of gravity in sub-pixel precision. By 
this procedure we are able to calculate the position and rotation parameters of each 
chamber. 

For January 2004 experimental run the photometric method was used for inner 
chambers. First photos were made on MDC II chambers and the magnet support 
structure and then, after moving plane I to measuring position, the same for MDC I. 
After the two projects were merged as shown in Figure 5.2. By comparing results to 
technical drawings a maximal mean deviation of 0.38 mm was found. 

 
Figure 5.2 – Optical survey data (blue points) for MDC I and II. The local chamber 
coordinate systems are plotted in red-green-blue for the x y and z axes. The red points 
marking the physical centre points of the chambers on the aluminium frame, the green 
points the physical centres on the middle plane as used for the hits. 

 
After the photometric procedure the relative positions of magnet structure and 

MDC II are known, and the positions of MDC I chambers respect to each other. But for 
the experiment MDC I was moved toward its nominal position, and its relative 
alignment respect to MDC II has to be calculated. 

This was done measuring cosmic rays, which at sea level are mostly high energy 
muons. We used an opposite TOF/TOFINO sector trigger for taking cosmics with a 
mean data rate of about 80 Hz. 

A sketch of reconstructed cosmic rays by inner cambers is shown in Figure 5.3, 
for the sector pair 1-4. The ray hits four chambers; we start from the optical survey 
alignment, and the position and orientation of MDC I is varied until the distances 
between measured points and projected ones in minimized for all the sector 
combinations. After the minimization procedure most of the sector residuals are around 
or below 100 μm. 

The last part of the procedure consists on outer chambers alignment. For them no 
photometric measure was done in January 2004, so a procedure using straight tracks 
from no magnetic field runs was adopted. 

Since we have an alignment of inner chambers, we can use straight tracks from 
these runs to align the outer chambers. The procedure consists on projecting the hits of 
inner chambers toward outer ones, and to minimize residuals of hit points by translating 
and rotating each outer chamber. Figure 5.4 shows a scheme of the used procedure. 
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Figure 5.3 – Reconstructed cosmic rays with 4 hits in inner chambers (MDC I and II) 
for the sector combination 1-4. On the left a side view (the scale is in mm), on the right 
a more 3-D view. 

 

Figure 5.4 – Scheme of outer module alignment. The hit of the inner modules are 
projected towards outer chambers, and the distance between the projected hit point and 
the measured one is minimized. 

 
The alignment obtained after all these steps can be checked by analysing elastic 

scattering, as it will be shown in the next paragraphs. In this case misalignment respect 
to different sectors and to the beam axis can be studied, and it is possible to estimate 
angular reconstruction. 
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5.3 Tracking algorithms 

The momentum of a particle which crosses the spectrometer can be reconstructed 
by measuring its deflection before and after the magnetic field region. 

For this purpose several tracking algorithms were developed and used. 
“Kickplane” is a low resolution algorithm which uses the information coming from the 
inner MDC modules and the META system, while “Spline” and “Runge-Kutta” 
perform high resolution momentum reconstruction using the full tracking setup. 

In the following paragraphs a description of the tracking algorithms will be given. 
 

5.3.1 Kickplane 

By measuring the trajectory deflection of a charged particle inside a magnetic 
field region, it is possible to reconstruct its momentum value. Indeed a charged particle 
which crosses a magnetic field region undergoes to the Lorentz force, its kinetic energy 
remains unaltered but it feels a deviation from the original trajectory, in function of its 
momentum. 

The trajectory in the region before the magnetic field is well determined by inner 
MDC chambers. But before the mounting of outer tracking system, and in particular for 
the November 2002 experimental run, the only information in the region after the 
magnetic field  came from TOF and Shower hit positions. In order to reconstruct the 
track after the magnet another point in the space is needed. 

The main idea for the momentum reconstruction with this setup is to use a virtual 
deviation plane, called “kick plane” [San00]. It consists on the assumption that the 
trajectory deflection in the field region happens abruptly in a well defined surface, 
called kick plane, in which the particle momentum undergoes to a transversal deviation 
PT determined by the path integral of the track in the field, and not by the original 
momentum, as shown in Figure 5.5. 

In this way the momentum  P of a particle with charge Z can be calculated, on 
first approximation, by knowing the momentum kick PT and the  deviation angle Δθ, by 
the formula: 
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By projecting the track measured by inner MDC chambers towards kick plane we 

can determine the position upon this surface. From the kick plane position we can 
evaluate PT, which is parameterised by knowing the magnetic field intensity in each 
point of the space (measured in the past by a special magnetic probe) and by simulation 
studies. From hit positions in TOF or Shower detectors we can calculate angular 
deviations, and at last momentum values. 

For a better approximation the momentum deviation depends even on the particle 
path length inside the magnetic field region (as longer the particle stays inside the field, 
it undergoes to a higher deviation), which is proportional to the momentum kick 

2sin2 θΔ= PPT ; to take into account to low momenta effects another parameter is 

needed. 
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Figure 5.5 – Schematic view of the kick plane algorithm. It is based on the assumption 
that particle deviation in the magnetic field region happens abruptly in a well 
determined surface, called kick plane. 

 
After these corrections, the correct the momentum formula will be  
: 
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The main limitation of this algorithm is that the track evaluation in the outer 

region depends on position resolution of META system, which is around 2-3 cm (much 
worse than the hundreds of microns of MDC chambers). The momentum resolution 
estimated  in simulation for carbon reactions is about 10%, which is similar to the one 
DSL had. 

For the proton experiment outer MDC setup was present and momentum 
reconstruction was performed by using different high-resolution methods. For this 
reason kick plane algorithm analysis  will not be shown in this work. 

Nevertheless the kick plane algorithm is still used for tracking in 3MDC sectors; 
for these sectors only one hit position after the magnetic field is not enough to 
determine the particle trajectory. An additional point is given by the hit projection into 
kick plane as in the low resolution case; by combining the information of the outer 
chamber and kick plane point is possible to evaluate the trajectory outside the field and 
after to recalculate momentum. 
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5.3.2 Spline tracking  

The Spline algorithm is a high resolution tracking method which uses the hit 
positions in all the MDC chambers, and its trajectory reconstruction is based on 
interpolation by spline functions. 

The equations of motion of a particle inside the magnetic field, considering 
( )zyx ,,  the coordinates in the laboratory system of the HADES experiment, are the 
following: 
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      (Eq.  5-8) 
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      (Eq.  5-9) 

 
where B is the magnetic field and m is the mass of the particle. 

If we use as momentum the expression: 
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we obtain, by combining the three previous expression, the differential equation: 
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(Eq.  5-11) 

 
The Spline algorithm reconstructs particle trajectories by interpolating the hit 

points given by MDC chambers, two before the field and two after2. It assumes a cubic 
spline model in the field region, while the trajectory outside the field is approximated 
by a quadratic function, as shown in Figure 5.6. The particle trajectory in the space is so 
determined by two spline fits, one for x and another for y coordinate. 

After we have x and y in function of z, we can divide the trajectory in several 
steps (in general 50 steps are used) and calculate the left side of equation 5-11 point by 
point. By another cubic spline fit, we can evaluate this expression A(z) and put it into 
equation 5-11, which becomes: 

 

( )zA
dz
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2

        (Eq.  5-12) 

 

                                                 
2 In sectors with only one MDC plane in the outer region, the algorithm evaluate the hit point in 

the kick plane surface and reconstruct a segment passing through this point and the MDC hit. By the 
intersection of this segment and the “virtual” plane of the missing chamber, the second point in the outer 
region is calculated.  
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By integrating two times the previous formula, we obtain the calculated value Yi 
for each point in the trajectory. In this case ( ) PzY  will be a good representation of the 
track. 

After we have calculated in this way the particle trajectory, we need to 
reconstruct its momentum. For this purpose we minimize the distance F (squared) 
between the calculated solution and what was obtained by the spline fit of the four 
MDC hit points: 
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F      (Eq.  5-13) 

 
where c1 and c2 are the two integration constants. 

At the end, by a least square fitting of the F quantity we can calculate the particle 
momentum P, as well as the two integration constants c1 and c2, by simply imposing the 
derivative of F respect to the three constants is zero and by solving the linear equation 
system. 

As shown here the Spline algorithm is based on approximations and 
interpolations of particle trajectories, so the momentum value it provides does not take 
into account fully the physical interaction of the particle inside the magnetic field. This 
means that this estimation can be improved, as it will be shown in the next paragraph. 
Nevertheless this algorithm has the advantage to be fast, because it does not require 
complicated or long calculations. 

 
 

Figure 5.6 – The Spline algorithm: the trajectory of a particle is approximated by a 
cubic spline in the region inside the magnetic field, and by a quadratic spline in the 
outer region. 
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5.3.3 Runge-Kutta tracking 

The Runge-Kutta algorithm is used to improve the high resolution tracking. By 
minimising the measured hit points and the fitted ones, it adjust the particle trajectory 
according to equation of motion, obtaining better values of momenta and angles. 

A charged particle moving in a magnetic field has to satisfy the following 
equation of motion, which describes the action of Lorentz force on a moving charged 
particle: 

 

( )( )sxB
ds
xd

P
kq

ds
xd rr

rr

×⋅⎟
⎠
⎞

⎜
⎝
⎛=2

2

      (Eq.  5-14) 

 
where s is the path length, k is a constant which is proportional to the velocity of light, 
q is the charge of the particle in unit of e, P is the absolute value of the momentum and 
B
r

 is the intensity of static magnetic field. 
A track is then completely determined by five initial (boundary) values called 

track parameters, which in our case are direction angles (θ and φ), positions (r and z3) 
and momenta. A track model is a set of cross positions in each detector surface for the 
track defined by certain track parameters. We will denote the track parameters as p and 
the track model as ( )pf . 

The track model can be formulated either as a full trajectory from an analytical or 
numerical solution of the equation of motion (5-14), or as a functional relation ( )pf  
which relates the impact points on specific chambers to some initial parameters p. 

In the Runge-Kutta algorithm the track parameters p are estimated by minimizing  
the least square function: 

 

( ) ( )( ) ( )( )pfmWpfmpQ T −−=      (Eq.  5-15) 

 
where m is the measurement vector, f is the track model (i.e. estimated hit vector from a 
given track parameter p), and W the weight matrix. The ( )pQ  at minimum satisfies the 
χ2 distributions. 

In our simply case we assume the errors are uncorrelated respect to different track 
parameters, so W  is of the form 2

jijijW σδ= , where σj are the errors propagated by 
the track fitting. 

In the presence of an inhomogeneous magnetic field, as the one of HADES 
spectrometer, an appropriate track tracing algorithm is needed to allow a particle to be 
travelled efficiently through a given detector setup. In our case it was used the fourth 
order Runge-Kutta method of Nystrom for this purpose [Pre02]. 

In order to minimize the ‘χ2 ansatz’ ( )pQ , we need a functional dependence of 
track interceptions on each detector surface for a given set of track parameter. In 
practice we need to differentiate Q  with respect to the track parameter p and to find a 
zero value for the above equation: 

 

                                                 
3 In our case the track hit position is determined by the minimum approach distance between the 

track and the beam axis (r coordinate), and their minimum approach point projected into beam axis (z 
coordinate). 
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The partial derivative of ( )pf  with respect to p can be computed by numerical 

differentiation: 
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where )0,...,,...,0( kk pp Δ=Δ . Consequently, the equation of motion has to be solved 
six times: one initial trajectory ( )0pfi , five variational trajectories ( )ppf ki Δ+0 . 

We need an initial trajectory (zero trajectory) from where to start our 
computation; this track model is defined by the track parameters coming from MDC 
angles and positions, and Spline momentum. From these track parameters we evaluate 
the corresponding track model (trajectory) and calculate its intersection points with the 
MDC planes. 

This information is put into equation 5-16. In order to solve it one applies 
Newton’s method and obtains a recursive relation between the track parameters and the 
ones from the previous recursive step.  

In a self consistent way new track parameter values are found with a χ2 lower 
than in the previous step, and they are put newly into the equation . 

When  the χ2 converges ( ( ) ( ) ε<− −1ii pQpq , usually ε<0.001 is enough), the fit 
procedure stops and give the final track parameters. So with Runge Kutta algorithm not 
only improves the momentum value but even the angular variables, as it will be shown 
in experimental data. 

 

5.4 No Field runs 

In the following paragraphs it will be shown the analysis on angular information 
of inner and outer MDC chambers, obtained in no field runs by means of elastic 
scattering channel. 

In particular no field runs are the only ones where it is possible to study the 
behaviour of outer chambers, because in this case the outer polar angle information is 
not distorted by the bending of the magnetic field. 

The elastic selection is performed by taking combinations of two fitted segments 
in the same event which hit opposite sectors, and belonging to the same kind of 
modules (so combining inner segments with only inner segment, outer segments with 
only outer segments). An additional condition was put at the 1st level trigger bit, 
selecting only event with multiplicity two in META and opposite sectors. 

First the vertex reconstruction will be explored, which allows to estimate the 
position of the beam line. After, a study on azimuthal and polar angles will be shown. 
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5.4.1 Vertex reconstruction 

Figure 5.7 – Target reconstruction for a segment pair. The vertex is defined as the point 
of closest approach of the two straight lines. 

 
One of the relevant information of a nuclear collision is where it took place. 

Assuming that the interaction between projectile and target is point like, we can define 
the interaction vertex as the point of closest approach of all primary tracks in the event. 

By knowing the vertex position we are able to select only reactions which 
occurred inside the target region, we can check if there are other particle sources and 
where they are placed, and evaluate even the beam quality (Figure 5.7). 

In our case we use fitted track segments belonging to opposite sectors, and we 
analyse separately inner and outer chambers. If we assume both the tracks are coming 
from the same interaction point, we can calculate the vertex point. 

A line in the space is defined by four parameters, which in our case are the polar 
and azimuthal angles θ and φ, and the two position parameters r and z. Each pair of 
MDC chambers (inner and outer) reconstructs the trajectory of the particle which hit 
them, a straight line if we do not have magnetic field, and it provides the parameters 
which are needed to define geometrically the line.   

Let’s define a line in the space as: 
 

trP iii ⋅+= α
rrr

        (Eq.  5-18) 

 
where ir

r  is the position vector, iα
r  is the direction vector and t is a free parameter. 

The distance of a point xr  from the line will be given by: 
 

( ) iii xrd α
rrr

×−=       (Eq.  5-19) 
 
We can than construct a χ2 function as the squared sum of the distances between 

the vertex point and the two track lines: 
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where σi is the position error given by the error propagation from MDC time fits. 
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Figure 5.8 -  Vertex reconstruction plots for inner MDC chambers. Left side: x vs z plot 
for vertex coordinates in the laboratory frame. Right side: z distribution. Apart from the 
target shape it is possible to see a prominent peak downstream, coming from the 
interaction of the beam with some material in the beam pipe. 

 
The vertex position is so calculated by minimizing this χ2 function, and the 

obtained χ2 will be a measure of the minimum distance of  the two tracks. 
The left side of Figure 5.8 shows a two-dimensional plot of the reconstructed 

vertex (z vs x) for inner MDC chambers, in the laboratory coordinate system. 
In the laboratory coordinate system the z axis corresponds to the beam line, 

greater values of z are in the downstream direction, while negative ones are upstream. 
The beam is so supposed to stay on x=0, y=0. 

The target shape is correctly reconstructed and its 5 cm length is well visible, as 
shown in the right side of Figure 5.8, but it is possible to see a second structure at about 
3 cm from the target in the downstream direction. 

The reason of this second peak comes from the beam focusing in the early days of 
the January 2004 experiment, when the no field measure was done. Indeed if we check 
the x distribution we can see it is not centred to zero, but it has a displacement of about 
6 mm; the beam direction was shifted respect to the centre of the beam pipe, and it hit a 
structure material placed downstream. In the field data, after the beam was better 
focused, this structure becomes negligible. 

We want to select elastic pairs so we have to remove all the tracks coming from 
this second peak. This is done by selecting only pairs coming from the target region, 
applying a cut on the z vertex coordinate of -80 mm < z < -20 mm. 

 

 
Figure 5.9 – Vertex plot for y vs x after the z selection (–80 mm < z < -10 mm). The 
estimated vertex reconstruction resolution is of about 2mm for both the coordinates. 

 

INNER  INNER  
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Figure 5.9 shows the y vs x distribution after the z selection. By fitting in a range 
close to the peak the x and y one-dimensional distributions by a gaussian function, we 
obtain the position of the beam and its spread4 in x and y coordinates: 

 
• Xinner = -5.8 ± 2.0 mm 
• Yinner =  0.8 ± 1.9 mm 
 

The same procedure can be repeated even for the outer MDC chambers. 
 
 

 
Figure 5.10 – Vertex plots for outer MDC chambers (left side: x vs z - right side: y vs x 
after the –80 mm < z < -10 mm selection). We can see x and y widths are larger  respect 
to inner module ones, because of their larger distance from the target region, and so 
their less effective reconstruction power. 

 
The vertex plots for outer MDC chambers are shown in Figure 5.10. Even for 

outer chamber pairs the second peak is prominent, so the same z selection was applied. 
We can see that the x and y distributions are broader respect to the inner chamber 

ones, as it is shown by the results of gaussian fits near the peak:  
 

• Xouter = -6.0 ± 2.4 mm 
• Youter =  0.6 ± 2.5 mm 
 

This is connected to the fact that outer chambers are farther from the target 
region, so the error on hit position propagated toward the target region becomes larger 
respect to the inner ones. 

As we can see, the centres of vertex  positions are consistent with what evaluated 
by the inner modules. 

 

5.4.2 Azimuthal angle 

After we have selected track pairs coming from the target region, so after 
removing the second peak, we can evaluate angles by using elastic pairs. 

The first considerations come from azimuthal angles. Coplanarity of the two 
elastic protons is expressed by the equation:  

 

                                                 
4 The sigma of the gaussian fit is the quadratic sum of the beam width plus the vertex 

reconstruction resolution. Considering that the MDC chambers have a position resolution of  ~ 100 μm, 
the corresponding vertex precision can be considered as negligible.  

OUTER  OUTER  
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Figure 5.11 – Difference in azimuthal angles between two tracks hitting opposite 
sectors, for inner chambers (left side) and outer chambers (right side). For outer 
chambers the counts on 3MDC sectors are multiplied by a normalization factor in order 
to compare their distributions to other sectors onew. 

 
°=− 18021 φφ         (Eq.  5-1) 

 
so we can plot this difference to check the azimuthal angle resolution of the 

alignment. 
Figure 5.11 shows the difference in azimuthal angle of opposite sector pairs in 

function of the azimuthal angle φ of one of the two tracks, separately for inner (left 
plot) and outer (right plot) segments. 

In the laboratory notation, the first sector is placed between 60° and 120°, the 
second one between 120° and 180° and so one, while the sixth stays between 0° and 
60°. In the right plot we can see the lose in angular resolution for 3MDC sectors (the 3rd 
and the 6th sectors), where there was present only one outer module and so for the 
angular reconstruction the lower resolution kickplane information was used. 

Even if no particle identification was performed, by simply using tracks in 
opposite sectors we are able to find the elastic one. Indeed the peak at 180° is well 
defined and prominent, apart from 3MDC modules.  

By comparing inner and outer chambers (only 4MDC sectors), the outer ones 
have a better resolution respect to the inner, the contrary respect what was shown in 
paragraph 5.4.1 for the position information by vertex reconstruction. This means that 
the particle direction is better reconstructed by outer planes, even because it is 
calculated on a longer distance so spreads are reduced respect to inner chambers. By 
checking the behaviour of the 180° peak in function of the azimuthal angle, some small 
systematic deviation are present, for some sectors the distribution seems a bit tilted, 
instead to be a perfect horizontal line. The alignment procedure worked quite well, but 
some improvements can be done. 

The main reason of the small systematic deviations is the beam position not 
centred along the z axis but a bit shifted, as shown in Figure 5.9 and Figure 5.10; this 
fact introduces a low order effect on the direction reconstruction in laboratory 
coordinate system. Moreover at the moment the hypothesis of a tilted beam direction 
respect to z axis in under study, and it can explain systematic deviations and larger 
resolution values than expected5.  

                                                 
5 The alignment procedure calculates absolute positions in the laboratory coordinate system. But 

an eventual deflection of the beam alters the reconstructed angular variables, and also momenta.   

INNER OUTER

6    1   2     3   4   5 6   1    2    3    4   5 
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Figure 5.12 – Coplanarity plots for different chambers: a) inner MDC modules; b) 
outer MDC modules, 4MDC sectors; c) outer MDC modules, 3MDC sectors. The 
gaussian fit near the peak provides an estimation of the single segment azimuthal 
angle resolution. 

 
Looking to outer chambers - 3MDC sectors, the bump width is much broader and 

not centred in the correct 180° position. This is due to the poor resolution of one 
chamber segment reconstruction, which does not allow to obtain high resolution 
tracking and alignment. 

The plots of Figure 5.12 show differences in φ for inner and outer segments, in 
the latter separately for 4MDC and 3MDC sectors. 

Assuming the azimuthal resolution is the same for both the opposite sectors 
chambers ( 21 φφ σσ ≡ ), we can evaluate the average single chamber φ resolution by the 
relation: 

 

φφφφφ σσσσ 222
2121

≡+=−       (Eq.  5-20)  
 
If we divide by 2  the fit widths shown in Figure 5.12, we obtain the following 

resolution values: 
 

°= 6.0inner
φσ  

 

°= 3.04MDC
outer

φσ  
 

°= 8.23
3

MDC
outer

φσ  

inner 

179.5 ± 0.78°

a)

outer 
4MDC sectors

179.71 ± 0.46°

b) outer
3MDC sectors

177.91 ± 3.95 °

c)
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5.4.3 Polar angle 

An analysis similar to what was done for the azimuthal angle φ can be applied 
even  for the polar angle θ. In this case the useful relation is: 

 

221
1tantan
CMγ

θθ =⋅        (Eq.  5-2) 

 
where for 2 GeV collisions (no field run) 0.48411 2 =CMγ . 

 
Figure 5.13 – 2D plots for θ1 vs tanθ1⋅tanθ2 inner chambers, sector by sector; the black 
line represents the prevision value obtained by the reaction kinematics. The chambers 
show a quite good alignment, and no systematic deviations are present. 
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Figure 5.13 and Figure 5.14 show sectorwise distributions for θ1 vs tanθ1⋅tanθ2, 
respectively for inner and outer modules. 

The plots are very useful in order to establish the quality of the alignment, 
because they are strongly dependent on the alignment. 

In the outer chambers we can see the not good resolution of 3MDC sectors, but even 
with this configuration the peak is visible and close to the kinematical prediction. 

 

 
Figure 5.14 - θ1 vs tanθ1⋅tanθ2 plots for outer chambers, sector by sector; the black line 
is the kinematical prediction. Even these chambers show a good alignment, apart for 
3MDC sectors. 
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In Figure 5.15 there are the tanθ1⋅tanθ2 plots for different chambers. The peaks 
were fitted by gaussian functions, and the obtained centroids stay in the position 
expected by theoretical calculation. Even in this case we can see that 3MDC sectors 
geometry needs an improvement, but a part from this consideration the numbers show 
the high quality of the alignment obtained by the described procedure. 

At the moment new alignment procedure are under study, which could achieve 
even better results. In particular it is under study how to use the additional information 
coming from proton-proton elastic scattering. But no one of these procedure was yet 
tested in January 2004 data. 

 

 

 
Figure 5.15 - tan(θ1)⋅tan(θ2) distributions for different chambers: a) inner MDC 
modules; b) outer MDC modules, 4MDC sectors; c) outer MDC modules, 3MDC 
sectors. The peaks were fitted by gaussian functions, and the fit values are reported in 
the plots. 

 

5.5 Field data – Spline Tracking 

While the no field data were used only for calibration and alignment purposes, the 
most of data were acquired with magnetic field, in order to use deflection to reconstruct 
particle momenta. 

But in between the to magnet setup the beam focusing was changed and 
improved, and it has to be rechecked; the same alignment analysis has to be  redone, in 
order to see eventual effects of the magnetic field on angular resolution. 

Because of the magnetic deflection, for alignment purposes the information from 
outer segment cannot be used, so it will be shown the analysis only for the inner one.  

Momentum reconstruction will be studied and resolution will be evaluated, by 
using spline tracking algorithm. 

The analysis of Runge Kutta algorithm and the comparison with spline will be 
shown in the paragraph 5.6. 

 

outer 
4MDC sectors

0.4841±0.0039

b) outer
3MDC sectors

0.476±0.017

c)

inner

0.4854±0.0044
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5.5.1 Vertex reconstruction 

The same procedure of paragraph 5.4.1 was applied for field data. 
This time we do not use the segment information from MDCs, but we use the full 

tracks reconstructed by spline algorithm. A full track is made by the correlation of inner 
segment, outer segment and META hit, and it carries with itself the information of the 
reconstructed momentum. 

In Spline case angular and position parameters are given by the inner MDC 
segment. All the plot that will be shown were made using these variables. 

But this time we can use an additional information, which was not present in the 
files without magnetic field, while trying to select our proton elastic pair.By the 
trajectory deviation inside the magnetic field the tracking algorithm evaluate the charge 
polarity of the particle; so we can select positive charged particles hitting opposite 
sectors, to select our protons. 

 

 
Figure 5.16 - Vertex plots for opposite sector tracks (left side: x vs z - right side: y vs 
x). With the new beam focusing, the second peak now is negligible and the cut on z is 
not needed anymore. 

 
Figure 5.16 shows vertex plots for field data, after the beam focusing. As it is 

shown in the y vs x plot (left side), the beam spot was shifted of few millimetres, in 
both x and y directions; in particular it results better centred in the x position.  The main 
result of this improved focusing is that now the second peak (left plot) is reduced 
respect to no field runs, because the number of particles which hit the material was 
strongly reduced. 

In this case we can see the selection on z vertex coordinate is not needed 
anymore, because this contribution became negligible. 

One dimensional distributions for x and y were filled an fitted by a gaussian 
function. The results are: 

 
• Xspline = -3.6 ± 2.5 mm 
• Yspline = -2.7 ± 2.5 mm 
 

The widths are broader respect to what obtained in no field data, but we have to 
consider that a fraction of the field is still present in MDC chambers, in particular for 
those plane closer to the coil. This low field influences the track reconstruction, and can 
produces a decrease in the resolution. 
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5.5.2 Azimuthal angle 

The same analysis of 5.4.2 was performed for field data. 
Figure 5.17 shows coplanarity distributions in function of the azimuthal angle for 

one particle of the pair (left side). We can see the distribution is well centred at 180° as 
expected, and no strong systematic behaviour can be seen from the plot. 

Indeed we can see the worsening of the resolution does not allow to do a fine 
check of the alignment. 

 

 
Figure 5.17 – Azimuthal plots for Spline tracking. On the right side φ1 vs 21 φφ − , on 

the left one single 21 φφ −  distribution and the results of a gaussian fit. 

 
Checking the one dimensional spectrum of the right plot, the main peak is closer 

to 180° than before (mainly due to the beam closer to z axis), but the width of the 
gaussian fit is about the double of what was evaluated before. We can compute the 
angular resolution as before, obtaining a value of  σφ = 0.96° (in no field data it was 
0.6° for inner MDC chambers). 

 

5.5.3 Polar angle 

In field data the kinetic energy of the projectile proton was 2.2 GeV, so the polar 
angle kinematical value is 0.45981 2 =CMγ . 

Figure 5.18 show the one dimensional distribution for tanθ1⋅tanθ2, averaged all 
over the sectors. We can see the peak is in the correct position. A gaussian fit was done 
and the width shows even in this case a worsening, consistent with what was found for 
azimuthal angles. 

 
Figure 5.18 – Distribution for tanθ1⋅tanθ2 integrated for all the sectors. 

180.01 ± 1.36 ° 

0.4603 ± 0.0067 
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In Figure 5.19 θ1 vs tanθ1⋅tanθ2 plots are shown sector by sector. The 
distributions are well centred to the kinematical value, but some systematic deviations 
from the vertical line are visible, in particular in the low polar angle regions. 
Nevertheless the achieved alignment is quite good and it can be used in field data, 
giving good results. 

 

 
Figure 5.19 - 2D plots for θ1 vs tanθ1⋅tanθ2 for positive charged spline tracks, sector by 
sector; the black line represent the kinematical value. The distributions are well centred 
to the expected position. Nevertheless some small deviations are still visible. 
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5.5.4 Elastic selection 

By combining the angular information about polar and azimuthal angles we can 
choose pairs close to the expected peak positions, in order to select only elastic pairs 
and take out most of the background. 

 

 
Figure 5.20 - |φ1-φ2| vs tanθ1⋅tanθ2 plot. Elastic pairs are placed in the 
region of the main peak. The black lines show the kinematical prediction 

 
 

In Figure 5.20 we can see how the use of topology can identify pairs belonging to 
elastic scattering. 

First of all we can define two variables given by:   
 

21 φφ −≡Φ ,  21 tantan θθ ⋅≡Θ      (Eq.  5-21) 

 
So we can construct a χ2 function as: 
 

( ) ( )
2

2
0

2

2
02

ΘΦ

Θ−Θ
+

Φ−Φ
=

σσ
χ       (Eq.  5-22) 

 
where 0Φ  and Φσ are centroid and sigma of the gaussian fit over azimuthal difference 
distributions (Figure 5.17), while 0Θ  and Θσ  are the fit results obtained by the product 
of polar angle tangents. In this case elastic pairs should stay at the peak positions, so 
their χ2 value should be minimal. 

On the left plot of Figure 5.21 the χ distribution is shown. The main peak 
corresponds to elastic pair so we can select them by introducing an upper cut, in order 
to strongly decrease the background coming from other processes (which is almost 
constant). A selection on pairs with χ < 3 was applied, in order to have most of the 
elastic pairs with the lower background contamination. The right plot of Figure 5.21 
shows how the cut selected pairs along the main peak (the black dots correspond to 
rejected pairs by the cut). 

By applying the topologic angular selection for positive charged pairs, we are 
able to select elastic pairs and to evaluate their momentum reconstruction. 
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Figure 5.21 – χ distribution for positive charged pairs (left side). By using a cut on χ<3 
it is possible to separate elastic pairs from the background. On right side the elastic 
topologic spectrum is shown after this cut; the black dots correspond to rejected pairs. 

 

5.5.5 Momentum reconstruction 

Assuming that a tracks is a proton coming from an elastic reaction, from the polar 
angle θ it is possible to calculate the “theoretical” value of momentum, and to compare 
it with the results of the tracking algorithm. 

Indeed the relation that correlates momenta to polar angles (for elastic scattering) 
is given by the formula: 

 

( )
θθγθ

θ
cossincos 2

CM

projp
p

+
=       (Eq.  5-3) 

 
where pproj is the momentum of the incoming proton (projectile). 

After we have selected elastic pairs from spline tracking, by the χ cut,  we can 
plot the ratio between kinematical prediction ( )θp  and spline value of momentum p 
belonging to one of the two protons, as shown in Figure 5.22. All the distributions are 
not normalized, but come simply from the values obtained by the tracking (no 
multiplication factors). 

We can see all the peaks are centred to value “one” even for 3MDC sectors, 
showing that the momentum provided by the algorithm works well, and so the 
alignment is correct. We can do a gaussian fit6 over the peak, in order to estimate the 
momentum resolution of the algorithm. 

The obtained momentum resolution values depend even on the polar angle 
resolution, which is used to estimate the theoretical value. 

Four MDC sectors present a resolution close to 5%, apart from the 1st sector 
which shows a broader distribution connected to the switched off wire layers on inner 
planes (less points for time fitting, and so worse resolution). 

About three MDC sectors, sector 3 have a bad resolution (16%) respect to the 
others, but for this sector we have to remember only one MDC chamber was used for 
the reconstruction of the outer segment, and it had only four wire layers working. In 
this case the time fit was not possible (we need at least 5 points to fit a line in the 
space), so the resolution is what comes from the cell size. The other sector presents a 
resolution (7.5%) which is even better than the 1st sector,  and below the 10% expected 
                                                 

6 In reality the momentum p does not follow a gaussian distribution, while the quantity 1/p 
presents this shape, because of  the particular geometry of the HADES magnetic field. But we are 
interested in momentum resolution, so the fit was done over momentum. 

χ<3
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from the low resolution kickplane algorithm. This tells us the spline reconstruction 
works quite well even in 3MDC sectors. 

In order to see if there are systematic deviations we can see resolution plots in 
function of the polar angle, as shown in Figure 5.23. 

It is well evident that at low polar angles, which correspond to higher momentum 
values, a systematic deviation is present in more or less all the sectors. This effected is 
connected to position chamber in the laboratory frame after alignment, which is close to 
the real value but it still needs a second order improvement. 
 

 
Figure 5.22 – Ratios between reconstructed momentum from spline and kinematical 
prediction, by using the polar angle θ. The reported values are the results of a gaussian 
fit in the peak region. 
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Figure 5.23 – Ratios between kinematical and reconstructed momentum for spline 
tracking, in function of polar angles. 

 
Figure 5.24 shows momentum times polar angle (left), and the momentum of the 

first proton versus momentum of the second one (right), for the sector pair which 
showed better resolution (sectors #2 and #5). 

We can see how momenta and polar angles are correlated, and how in the lower 
angle region the spread in momentum becomes larger, due to high momentum values 
which are difficult  to reconstruct because of their small deviations. The HADES 
acceptance for elastic pairs is well visible in these plots. 

We have to consider in resolution evaluation that the minimum value of proton 
momenta is of about 800 MeV/c, while in general HADES is best suited to detect 
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leptons which possess lower momenta. So we can consider these values as a sort of 
upper limit to the actual momentum resolution for leptons. 

 

 
Figure 5.24 -  Plots for sector pair 1-4, which shows a better resolution. Momentum 
versus polar angle (right side), and momentum of a proton respect to the momentum of 
the other one. The black lines represent theoretical predictions. 

 

 

 
Figure 5.25 – Missing mass distributions on the left, and in function of polar angle of 
one proton on the right, for different sector pairs. The kinematical value of proton-
proton invariant mass is  2768 MeV/c2, and it is indicated by the black lines. 

SEC 1 - 4

2722 ± 99

(3.6%)

SEC 2 - 5

2722 ± 79

 (2.9%)

SEC 3 - 6

2702 ± 165

 (6.1%)

SEC 1 - 4

SEC 2 - 5

SEC 3 - 6 

SEC 2 - 5 SEC 2 - 5 



 28

Indeed we are interested in evaluation of invariant mass resolution, instead of 
single proton one. Knowing the proton momentum vector 1pr , from the measured 
momentum and polar angles values, we can calculate the total energy Ei and so the 
value of the pair invariant mass: 

 
( ) ( )2

21
2

21 ppEEM rr
+−+=       (Eq.  

5-5) 
 
In Figure 5.25 invariant mass distributions are presented for different sector pairs. 

The peaks are at the nominal position, while the best resolution value we can obtain is 
2.9% in sector pair 2 and 5. The plots in function of polar angles show the same 
systematic behaviour of single track resolution plots. 

Indeed in the “central” region of polar angles (around 40°, which corresponds to a 
momentum value of ~ 1500 MeV/c), the obtained invariant mass is underestimated 
respect to the kinematical value. Something similar is present even in the right plot 
Figure 5.24: there is an agreement at the edges of acceptance, while in the central 
region the experimental values seem lower. 

The spline algorithm calculates momentum by interpolation, so it does not take 
into account the physics of the particle interaction with the magnetic field. Its 
momentum reconstruction will be improved by the Runge Kutta tracking. 

 

5.6 Field Data – Runge Kutta Tracking 

Runge Kutta algorithm takes position and angular variables from the inner MDC 
segment, momentum values from the spline algorithm, and it does a kinematical refit of 
the tracks, providing a new set of parameters (θ, φ, r, z and p). The quality of these new 
values, different from the ones used by Spline tracking, will be studied in the next 
paragraphs and their improvement will be estimated respect to previous values. 

 

5.6.1 Vertex reconstruction 

Figure 5.26 shows vertex plots for Runge Kutta algorithm, by using polar angles 
and hit positions recalculated by the tracking code. 

In order to understand the differences respect to values obtained by the segment, 
Figure 5.27 shows comparison of one dimensional distributions for vertex coordinates 
between old and new values. 

 

 
Figure 5.26 – Vertex plots for Runge Kutta algorithm. 
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Figure 5.27 – Comparison of vertex coordinate distributions between Spline and Runge 
Kutta algorithms. While the z coordinate remains substantially unchanged, x and y are 
corrected toward the peak position. The distribution widths for Runge Kutta agree to 
what was obtained in no field data. 

 
While the z coordinate remains almost unchanged, a strong improvement can be 

seen in x and y distributions. In this case the peak positions remain unchanged, while 
the distributions become narrower, with widths close to the values obtained in no field 
data. 

We can argue Runge Kutta algorithm applies a strong correction on the track 
variables, and the improvements is visible at the level of vertex reconstruction. In the 
following paragraphs results on angular distributions will be shown. 

 

5.6.2 Azimuthal angle 

In order to understand the changes done by the Runge Kutta algorithm, we can 
look to distributions of the difference between the segment value of azimuthal angle φ 
and the new one recalculated by Runge Kutta tracking. 

By looking into Figure 5.28, which shows the φ deviations made by Runge Kutta 
respect to MDC segment values, the azimuthal angle was changed mostly in the low 
polar angle region (right plot), where momentum resolution distributions for Spline 
showed some irregularities, while deviations in function of azimuthal angle are not so 
strong. It seems Runge Kutta algorithm is able to improve the alignment, by moving 
track parameters in the “correct” position; we have to stress that Runge Kutta tracking 
code does not use elastic scattering information but only the particle equation of motion 
inside magnetic field, so the algorithm is substantially independent from the studied 
physical process. 

SPLINE – 3.6 ± 2.5
RK  – 3.5 ± 2.1

SPLINE – 2.7 ± 2.5 
RK  – 2.8 ± 2.0 

SPLINE
RK
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Figure 5.28 – Differences between the azimuthal values obtained by spline tracks 
(MDC segment values) and the recalculated Runge Kutta ones, in function of φ (left) 
and θ (right). 

 

 
Figure 5.29 – Coplanarity plots for azimuthal angles obtained by Runge Kutta tracking. 
On the left the distribution in function of φ value of one proton, on the right comparison 
between 21 φφ −  peak obtained by Spline and the corrected by Runge Kutta. The 
improvement is quite impressive. 

 
Coplanarity distributions after the adjustment  are shown in Figure 5.29. The 

azimuthal resolution improved a lot, and in this case we can see some small systematic 
deviations which are still present. Nevertheless, by looking into one dimensional 
spectrum (right side), the obtained angular resolution has improved of about a factor 2, 
and the value is in agreement to the one found in no field data (0.78° for inner MDC 
segments) 

We can argue Runge Kutta recalculates azimuthal angles by correcting segment 
values, in order to get rid of eventual alignment problems and of the presence of a low 
field inside inner MDC chambers. 

 

5.6.3 Polar angle 

The same analysis can be done for θ  polar angle. In Figure 5.30 it is possible to 
see polar angle deviations plotted in function of φ and θ. 

By looking at the distribution in function of the azimuthal angle, while at the 
chamber centres the φ value is almost good, at the edges the reconstructed value is 
lower than what obtained by the segment. We can see MDC tracking has some problem 
in the not central region of the chambers; this could be connected to alignment, but we 

SPLINE 180.01 ± 1.36 
RK  180.01 ± 0.69 

1   2    3    4   5    6  6   1    2    3   4    5

 6   1    2    3   4    5
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must consider the edges of MDC modules are closer to magnet coils, and there the 
magnetic field is stronger respect to central regions, so the particle trajectory can be 
affected by the field. Nevertheless Runge Kutta tracking can  recover this effect, taking 
into account the field effect inside chambers. 

By checking deviations in function of polar angle θ, the patterns show 
adjustments were done for each sector in a different way. 

In Figure 5.31 the distribution of the new tanθ1⋅tanθ2 value is shown, in 
comparison to the Spline one. The position of the peak remains almost unchanged, 
while the width is reduced to lower values, even if still higher respect to the no field 
numbers. 

By checking the tangents product in function of θ (Figure 5.32), the distribution is 
well centred at the kinematical prediction, while the width has a small improvement 
respect to the previous values, which can be checked by simply looking at the scale of z 
axis (the sample of analysed pairs is the same used for spline analysis). 

The obtained resolution is about 1.2%, in comparison with 0.9% obtained with no 
field data from inner segment. 

 
 
 

 
Figure 5.30 - Difference between polar angles obtained by spline tracks and the 
recalculated Runge Kutta values, in function of φ and θ. We can see the changes occur 
mostly at the edges on the chambers. 

 
 

 
Figure 5.31 – Comparison between tanθ1⋅tanθ2 distributions for spline and 
Runge-Kutta algorithms. Even in this case an improvement is visible, but 
not so strong as for azimuthal angles. 

SPLINE 0.4603 ± 0.0067
RK  0.4602 ± 0.0057
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Figure 5.32 - Plots for θ1 versus tanθ1⋅tanθ2 by using Runge Kutta recalculated polar 
angles. As expected the distributions show an improvement respect to MDC values 
(Figure 5.19), and they are better centred to the kinematical prediction (black lines). 

 

5.6.4 Elastic selection 

By using Runge Kutta angular values we are able to construct a χ2 function such 
as 5-22, but this time using the values obtained by fits over Runge Kutta variables. 

The χ distribution is shown in Figure 5.33, and it is similar to what obtained 
using Spline tracking. 
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Figure 5.33 - χ distribution for elastic pairs using Runge Kutta tracking (left side). On 
right side the elastic topologic spectrum is shown after the cutχ<3; the black dots 
correspond to rejected pairs. 

 
In order to compare the same data sample it was used the same cut to do a 

topologic selection on elastic pairs, so a condition  on χ<3 was imposed. 
The right side of Figure 5.33 shows the topologic distribution after the selection. 

We can see the peak is narrower respect to the Spline one, so in this case we are cutting 
away much more background coming from not elastic processes. 

After applying the χ selection, we can study elastic pairs and evaluate momentum 
reconstruction resolution as already shown before for Spline. 

 

5.6.5 Momentum reconstruction 

By comparing the Runge Kutta momentum value with the theoretical one 
calculated using the reconstructed polar angle θ, we can evaluate the momentum 
resolution of the algorithm. 

In Figure 5.34 the ratio between experimental values and theoretical ones is 
plotted in function of the polar angle θ. 

Respect to spline tracking the distributions so obtained are much better centred to 
the correct value, and they show a lower spread. By looking at lower polar angle values 
some deviations are still present, but they are decreased by the Runge Kutta angular 
adjustment. We can argue the alignment needs an improvement, but nevertheless the 
Runge Kutta tracking algorithm is able to recover the errors made by a not exact 
position determination in the laboratory coordinate system. 

The obtained resolution plots are shown in Figure 5.35, in comparison for 
different tracking systems. 

Three MDC sectors do not show strong effects after the recalculation, considering 
that the peak position and the widths remain almost the same as before. Sector 6 
remains unchanged, while in sector 3 the resolution is worse of one point percent. We 
can state at the moment Runge Kutta tracking does not improve the measure when only 
3 planes are present, because of the lower number of  points usable for the 
reconstruction (Runge Kutta tracking does not use kickplane points). 

By checking 4MDC sectors the improvement in terms of resolution is strong. All 
the resolution values in these sectors decrease and even the peak position is better 
centred to the value “one” (1). The improvement is much stronger for sector 1, which  
showed a worse Spline resolution respect to the others, mainly connected to the lesser 
number of working wire layers respect to other sectors. Even in this case Runge Kutta 
tracking can recover the loss in resolution connected to the lack of wires, by combining 

χ<3 
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the values we can get from all the wire layers which are present in the same sectors 
(inner and outer). 

The sector which present the best momentum reconstruction is number 2, with a 
resolution of 4.0%, compared to the 4.8% from the spline algorithm. 

If we check the plots of Figure 5.36 the difference between reconstructed and 
theoretical momentum values is reduced respect to the Spline  plots (Figure 5.24).  

The last thing to check is the invariant mass resolution we can get by using this 
angular and momentum reconstruction. Figure 5.37 shows invariant mass plots for 
different sector pairs, compared to the distributions using spline momenta. 

 

 
Figure 5.34– Ratios between reconstructed and kinematical momentum for Runge 
Kutta  tracking algorithm, in function of polar angle. The improvement respect to spline 
distributions (Figure 5.23) is well visible. 
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Figure 5.35– Ratios between reconstructed momentum and kinematical prediction 
from polar angle θ, obtained by using Runge Kutta (in blue) and Spline (in red) 
tracking algorithms. 

 
The improvement in resolution is well visible, in particular in the region of 

central polar angles (right plots), were the discrepancy present in spline is lowered and 
the distribution is moved toward the theoretical value. 

The best invariant mass resolution value is 2.3% at 2.7 GeV/c2, for 2-5 sector 
pair. For 3MDC sectors the resolution stays at 6%, but we have to underline this high 
value is mainly connected to the poor resolution in sector 3, due to the lack of wire 
layers. 
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Figure 5.36 – Momentum plots for sector pair 1-4, which shows a better resolution. 
Momentum versus polar angle (right side), and momentum of a proton respect to the 
momentum of the other one (left side). The black lines represent theoretical predictions. 

  

 

 

 
Figure 5.37 – Missing mass distributions for Runge Kutta tracking (in blue) compared 
to Spline one (in red). The RK mass distribution in function of polar angle of one 
proton on the right. The kinematical value of proton-proton invariant mass is  2768 
MeV/c2, and it is indicated by the black lines. 
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5.7 Momentum resolution summary 

All the momentum resolution values obtained for Spline and Runge Kutta 
algorithms are reported in Table 5-2, together with the values from simulation analysis 
by using exactly the same procedure to select protons from elastic scattering. Errore. 
L'origine riferimento non è stata trovata. shows the obtained values for invariant 
mass resolution of elastic pairs. 

The discrepancy between simulation values and experimental ones is actually 
under study. The simulation takes into account the number of working layers for each 
MDC chamber as present during data acquisition, and this feature can be seen in the 
differences between resolution values for different sectors, which follow the same 
behaviours of experimental data. Moreover in simulation the geometry of the various 
sub detectors is known so effects of misalignment are not present. 

Nevertheless actually the simulation setup differs from the experiment. First of all 
in simulation the beam is centred at (0,0) position, while it was found in the vertex 
reconstruction analysis that during the acquisition time the beam was shifted and even 
moved during the days. This shift imposes a global movement of the “real” coordinate 
system respect to the “laboratory” one, which is calculated by the alignment procedure. 

While this effect is of a secondary order, there are some hints that the beam was 
not parallel to the ground level but a bit tilted respect to z axis; all the angular 
reconstructed variables could affected by this effect, and in particular the expectation 
value of momentum calculated by polar angle. In this case by correcting the geometry 
definition it will be possible to have better resolution values. So we can state at the 
moment the obtained values are an upper limit of the HADES momentum resolution. 

Moreover the effects of a drift times measured in absence of the START detector, 
and of a possible inner misalignment of wire layers, are at the moment under study and 
their relative loss in resolution. 

However, by analysing elastic scattering process, for the first time it was possible 
to evaluate the experimental angular and momentum resolution of the HADES tracking 
system, to understand possible problems and the manners how to solve them.  This was 
one of the mail goal of the January 2004 experiment. 

The second goal was the exclusive η reconstruction, and in chapter XX it will be 
shown it is possible with the current setup and tracking resolution. 

 

 
Sector 1 2 3 4 5 6 

SIM 2.1 % 1.9 % 3.4 % 2.0 % 1.8 % 2.4 % 
Spline 

EXP 9.3 % 5.8 % 16.2 % 4.9 % 4.8 % 7.5 % 
SIM 1.4 % 1.2 % 2.7 % 1.4 % 1.6 % 2.0 % 

RK 
EXP 6.0 % 4.6 % 17.1 % 4.4 % 4.1 % 7.1 % 

Table 5-2 - Values of momentum resolution for Spline and Runge Kutta tracking 
algorithms, for simulation data and experimental ones. 
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Sector pair 1-4 2-5 3-6 

Mass [MeV/c2] 2760 2758 2759 
σ [MeV/c2] 21 20 31 SIM 

 
dM/M [%] 0.77 0.73 1.11 

Mass [MeV/c2] 2722 2722 2702 
σ [MeV/c2] 99 79 165 

Spline 

EXP 
dM/M [%] 3.6 2.9 6.1 

Mass [MeV/c2] 2764 2764 2763 
σ [MeV/c2] 16 15 27 SIM 

 
dM/M [%] 0.6 0.6 1.0 

Mass [MeV/c2] 2752 2731 2710 
σ [MeV/c2] 76 62 160 

RK 

EXP 
dM/M [%] 2.8 2.3 5.9 

Table 5-3 - Values of invariant mass resolution for Spline and Runge Kutta tracking 
algorithms, for simulation data and experimental ones. 
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NOTE 
Spline tracking: equazione 5-11 due volte 
Runge-Kutta tracking: equazione 5-14, equazione 5-16 
Elastic selection: equazione 5-22 
Momentum resolution summary: capitolo XX per eta reconstruction 
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