~ PAT — PostDST Analysis Tool

A tool which brings you closer to your dedicated physical
analysis making some intermediate analysis steps very easy
but this is not the tool you draw your final histograms with

Each piece of software has some features and limitations!

Rapid analysis development Ifyour analysis 1S very

and immediate effects
Simple no deep programming knowledge
(unless you really want to change the code)

specific and goes
beyond the tool can
provide, do not

In most cases you will need to change only a few hesitate to ask

lines of code (define particle combinations and how to alter the code
provide your (i.e. graphical) cuts in ROOT files.




th

w/ Fhon
| B8 R 5

A+
\'AY UUd L

N oo TR0 gl
1V d L

Experiment Simulation

| , PLUTO

( HSD, UrQMD, 1IQMD, BRoBUU )

DST

( hit & track reconstruction )

4 GEANT FILTERING

( full particle tracking and ( acceptance, spectrometer

detector response ) resolusion, efficiency )

PAT 7 haro
" . final analysis tool publication,
c— PhD ©
TiFini -



PAT - general idea

* Intermediate analysis tool
e From HPidTrackCand(Sim) - D5T [evel

e lntil any combination of single tracks
o Full combinatorics done automatically

e Information propagated
o Common event data
o Full set of particle data
o Automatic data flow from the beginning till the end
o Minimum (or none) of code to be written by the user

e The |ast part (very specific physical analysis)
has to be written and understood by the user!

select
what you want
and have it in the
output file with
no extra care!



Example 1

|

HNtuple — simple data tree
® Location: libHydra.so (HYDRA), but for training now:

* Download source code (HNtuple.tar.gz):
http://hades-wiki.gsi.de/cgi-bin/view/Homepages/HNtuple

* In PAT you will define your particle set
(a combination from 1 to 4 particles) with a label

® The label will become automatically an NTuple name

® You will select the variables to be stored always
with the method set( "any name", value )

e Automatic data propagation till the output file

® No need to book explicitly any ntuple, no need to take
care of data once they have been selected



Example 2

|

PAT — compile the source code
® Location: (not in HYDRA so far)
* Download source code (PAT 5thSummerSchool.tar.gz):

http://hades-wiki.gsi.de/cgi-bin/view/Homepages/PAT

® For this training only the core and the user parts are
together (because the code is not in HYDRA yet)

® The core part of the source code (it will be a library) is
supposed not to be changed unless necessary

® The user part is the place to define what to analyze
and which selections, cuts etc. to apply

® User is responsible for cut definition (i.e. you have to
draw your own graphical “banana” cuts)



Basic data units

HParticleCandidate

HParticle

HHypCandidate

Container with a set of useful particle

parameters, copied from HPidTrackCand,
(or HPidTrackCandSim) selected by the user.
Auto-recognition if data are simulation
and copying additional set of data.

Storing a variable is as easy as:
set("label” , variable);
called in the constructor.

For example:

set("rich_amp", pHit->getRingAmplitude() );
and since then "rich_amp" is propagated
to all higher data levels.




e

Where and how can | add or remove data of my interest?

* Open file: hparticlecandidate.cc

set("id", 0.);
set("sector”, HitData->getSectar() ); Here we recognize
set("system”, HitData->getSystem() );
set("p", TrackData->getMomenta(4) );

// ..andsoaon..

HPidTrackCandsim *PidCandSim = dynamic_cast<HPidTrackCandSim™>( ptr );
if (PidCandSim!1=0) {
HPidGeantTrackSet™ ptrSim = PidCandSim->getGeantTrackdet();

set("sim_iscomman”, ptrim->getMostCommonCorrelation() );
set("sim_id", ptrSim->getGeantPID() );

* Any data is just a matter of a line of code with “"set” method.
® This is core code modification but very easy!



m}’arﬁciewndidate object added?
Can | get data also from the other categories?
(i.e. HWallHit or HMdcClusinf)...

* Open file: hparticlepool.cc and hparticledatapool.cc

void HParticlePool:|loop(Hlterator™ datalt) { void HParticleDataPool::addPartCand
/] .. (EParticle eld, HPidTrackCand *ptrC) {

if (PidCand->isFlagBit(HPidTrackCand:klsUsed) ==1) = HParticlelandidate “ptr =
addPartCand(myEld, PidCand); new HParticleCandidate(ptrC);

» Similarly it is possible to add HWallHit information (for example
another version of HParticleLandidate constructor). To any
HParticleCandidate object one can add more data (i.e. from
HMdcClusInfo) with the ”set” method.

* However, this requires core code modification,
therefore please call me for help!



Basic data units

HParticleCandidate

HHypCandidate

Wrapper to HParticleCandidate class

pointers. Because the combinatorics

is done on pointers (different combinations
with the same pointers set) this class
allows to overwrite existing variables and
add new variables.

For example:

Each HParticleCandidate object has a prefix
defining the particle species, like

hpos — positive hadron,

Ineg — negative lepton etc.

Hadron can then be a proton or or a 1+,
therefore in HParticle the new particle id
shadows the "old” one.




L mmm—

Particle — a wrapper
Open file: hparticle.cc

HParticle:HParticle(HParticleCandidate *pC) : pLand(pC) {
set("id", pCand->getkld() );

set("track |E”ch -1.); Here we overwrite the id value

set
set

‘tof_new", ) present in HParticleCandidate

(

set("tof mum -1.); and add new variables not
(
("

o Ry !--I et bt (e

tle object contains (a pointer to) HParticleCandidate but
also it has an independent list of data (name — value)
User can add new data or overwrite "old” data (from
HParticleCandidate) and the new value will be streamed to

the output. HParticleCandidate object is not changed because
it contributes in many other combinations!



Basic data units

HParticleCandidate

HParticle

HHypCandidate

A combination of particles of a given
pattern. Combination has a name (label)
and a set (array) of pointers to HParticles.

Each "hypothesis™ has a pointer to a pattern
it represents. The container stores one

set of combined particles and collection

of such objects will keep all combinations.




Example 4

/Fiﬁ;pCandidate — set of particles
Open file: hhypcandidate.h

class HHypCandidate : public TObject { // ...
protected:

ParticleCandSeq nPart: An array of particles (pointers)

ParticleCandSeqlter partlter; ofa gwer;lcloaml;lt?sion based
HPattern *pPattern; P

b | ey

There are many places in the code where | use typedefs of
some types, i.e.: ParticleCandseq. All these (typedef)
definitions you can find in the file hcommandet.h

typedef std:vector< HParticle™ > ParticleCandSeq;

If you want to read (understand, change...) the core code
| recommend to print hcommandet.h file!



What is the "HPattern” to which HHypCandidate refers to?
* Open file: hpattern.h

Really open it (there are too many lines to copy/paste here)

 HPattern object is very important (in the core code)!

* It holds the pattern of user defined particle combinations,
l.e. pp, ete-, pet+e-, pppi+pi-, K+K- etc.

* It holds the output (if defined), books the ntuple, passes the
data to the ntuple, calls filling the ntuple

® User can also define the prefix or suffix to any data label,
this way i.e. momentum (labeled ”p”) is automatically
supplemented with the particle type, i.e. “ep_p” for positron



Data pools

HHypDataPool

HParticleDataPool
T
HPool
HParticlePool HHypPool

Direction of the analysis

HPidPoaol




P

" HPool — define your pattern

Open file: hpool.h

Set of common (event) data,
class HPool { public: i.e. event number,

HPool(HOutputFile *ptr = 0); multiplicity, event vertex...
virtual ~HPoal() =0; // ...

bool add(const char™ name, EParticle pl);

bool add(const char™ name, EParticle pl, EParticle p2); // ... and so on
protected:

HEventPool eventData;

std:list<HPattern™> objectList;

II) .

Any “pool” is a data structure streamed to the output file
(if defined). User defines here patterns: all particle
combinations (method “add”) — name (label) and particle
species (humber of particles from 1 to 4).



Data pools

HEventPool

Container for keeping the common event
information (event number, particle multiplicity,
event vertex information efc.). Object of this
type is present in every data pool and
propagated to the next one.

At each higher data level (data pool) you can
add more information to the HEventPool. It

will be then automatically streamed to the
output file.




W

HParticleDataPool ‘

MultiParticle partCand;
typedef std:multimap< EParticle, HParticleCandidate™ > MultiParticle;
ParticleNum partNum;

typedef std:map< EParticle, int > ParticleNum:;

HHypDataPool

MultiHyp hypCand;
typedef std:multimap< std::string, HHypCandidate™ > MultiHyp;

HypNum  hypNum;
typedef std:map< std::string, int > HypNum;



Data pools

‘ HParticlePool

HHypPool

HPidPool

Container for various particle candidates
like +/- hadrons, +/- leptons first,
then particles: p, T+, 11-, e+, e- and so on.

Defining your combination pattern:

HParticlePool myParticles( &outputFile );

myParticles.add(,,all", eHadronPos, eHadronNeg,
elLeptonPos, eLeptonNeg);

For example:

You can also define a smaller subset, i.e.
only lepton candidates. Particle species

are decided based on tracking

(Runge Kutta) information. Positive/negative
polarity means +/ — particle, correlation with
a RICH ring means lepton.




Data pools

HParticlePool

HHypPool

HPidPool

During copying particle (track) information
from HPidTrackCand a track cleaner decision
is taken into account in order to reduce
garbage tracks (killing the performance
and the signal). You can change it, i.e.

to take all particle candidates.

Later, a cut (window between RICH / MDC)
for leptons additionally checks correlation.
If a ring and a track are outside the cut,

the track returns to hadrons.




Example 6

- HParticlePool — first step in data flow

Open again file: hparticlepool.cc

datalt->Reset();

while (((PidCand = (HPidTrackCand *) datalt->Next()) 1= 0)) {
isPositive = ( FidCand->getTrackData()->getPolarity(4) > 0) ? kTRUE : kFALSE;
isRing = PidCand->getHitData()->getRingCorrelation(4);
EParticle mykld;

if (isPositive && isRing) mykld = eleptonPos;

else if (isPositive && lisRing) myEld = eHadronPaos;
else if (lisPositive && isRing) myEld = eLeptonNeg;

else if (lisPositive && lisRing) myEld = eHadronNeg;

Preliminary particle selection (positive/negative, hadron/lepton)
Limit on the maximum multiplicity of a given particle species
Only good tracks (based on track cleaning procedure) taken



Data pools

Container for HHypCandidates, each of
them has a name (label) and a set (array)
HParticlePool of pointers to HHypCandidate object.

Defining your combination pattern:
HHypPool myHyps( &outputFile );

‘ HHypPool myHyps.add("LpLm", eLeptonPos,eLeptonNeg);
[ — myHyps.add(,,HpHp", eHadronPos,eHadronPaos);

For example:

HPidPool You give a label and list of particle species
(from 1 up to 4). Here (HHypPool) we do not
know particle id yet, only if it is positive

or negative, lepton or hadron.




Data pools

HParticlePool

HHypPool

HPidPool

Full combinatorics is done automatically.
In each event you have N particles and
following the user pattern all combinations
(1,N), (2,N), (3,N) or (4,N) are done. The
limit (N<30 of a given particle type) is for
performance reasons only.

You can define in parallel as many
combination patterns as you want

and each pattern will have the separate
ntuple output to the file.




e S
- HHypPool — particle (but no id) combination

* Open again file: hhyppool.h

private:
int count(HPattern *ptrC, HParticlePool& refPPool);

void combine(HPattern *ptrC, HParticlePool& refPPool);
std:vector<HHypCandidate™> hypSet;

® Full combinatorics (N choose k) is done here

* Method “count” calculates how many combinations
of a given pattern are possible in a given event
(taking particles from HParticlePoal)

* Method “combine” does all combinations and stores them
in the array of HHypLandidates (here hypaet)



mmbinatorics is done? Is it k-element subset
of N-element set with the order irrelevant?

* The order is relevant if you have more than one particle of
a given species. Keep in mind that you do your particle
combination first on a level of generic particle selection, i.e.
H+, H-, L+, L- (H — hadron, L — lepton).

® For example, H+H+ (two positive hadrons) can become i.e.
proton-proton (and you need to avoid double counting by
selection of one combination) or proton-pi+ (then it is
important which hadron is really proton/pion, 1st or 2nd).

* Open file: hhyppool.h and see
#define COMB_REPETITION |

what means that choosing particles with repetition is active.
If you want combinations with no repetition, change 1to 0



Data pools

HParticlePool

HHypPool

‘ HPidPool

Container for HHypCandidates, but now all
particle candidates are assigned to be
real particles.

Defining your combination pattern:
HPidPool myPids( &outputFile );
myPids.add("LpLm", "EpEm", ePasitron, eElectron);
myPids.add("HpHp", "PP", eProton, eProton);
myPids.add("HpHp", "PPip", eProton, ePiPlus);

For example:

The action between HHypPool and HPidPool

is usually applying user cuts making time
(beta) recalculation, PID selection efc. You
can define as many HPidPool objects with
various cutting scenarios as you want.




Example 8

" HPidPool — various id scenarios

———

® Suppose we have defined combination of 2 positive hadrons.
HHypPool myHyps;

myHyps.add("H

H", eHadronPos, eHadronPos):

Feeding from the same combination we can define which
particles we actually want to have in the combiantion:

HPidPool myPic
myFids.add("H

s( &outputfile );
1", "PP" eProton, eProton);

myPids.add("H

{", "PPip" eProton, ePiPlus);

* These ”eSomething” names are just enumeration type labels

to be found

in hcommaondet.h file: ellnknown=0, ePositron=2. eElectron=3,

ePiPlus=8, ePiMinus=3, eProton=14, eleptonPos=102, eleptonNeg=103,
eHadronPos=I04, eHadronNeg=I05 — you can extend the list!

(di

d | tell you to print that file?) ;-)



/Ok’,mve got a bunch of par?icle combinations, possibly
more than one per event. Which is the best?

®* The best combination needs to have a parameter
distinguishing it from the other combinations. Usually
this is y? calculated elsewhere (i.e. in a user cut or selection).

* In elementary collisions | reconstruct the time of flight and
calculate y2 (provided also detector time resolution). Then in
HPidPool:ill() 1 loop over all combinations of a given pattern
and select that one with the lowest 2

® Then | add a new data field:
eventData.set( "isBest”, | ); // or O if not the best

* Sometimes we want more than one “the best” combination
— this happens in the case of acceptance/efficiency matrix
production with many white (good) tracks per event. In this
case call me for help (in order to change slightly the code).



Reconstructos (players)

HTrackPlayer

HParticlePlayer

Reconstructor acts between DST data
(HPidTrackCand, HPidTrackCandSim)
and HParticlePool.

Defining reconstructor:
HTrackPlayer * hyp = new HTrackPlayer( myParticles );

For example:

Usually here you want to define your fine
particle (track) candidate selection, i.e.
apply some narrower correlation window
for your leptons or do some track cleaning.




Reconstructos (players)

HTrackPlayer

HParticlePlayer
Reconstructors act between HParticiePool

and HHypPool, and between HHypPool
and HPidPool, respectively.

- | Defining reconstructors:

HParticlePlayer * hyp2 =
new HParticlePlayer(myParticles, myHyps);
HHypPlayer * hyp3 = new HHypPlayer(myHyps, myPids);




Example 9

HHypPlayers — various scenarios
® |tis important to understand that a player (reconstructor) is
a place where you add your cuts (as many as you want and in any
order). It is convenient then to investigate the influence of a given
cut just by creation of different final HHypPlayer reconstructors
(which target different final HPidPool objects)

* HPidPool myPids_A( &outputfile );

myPids_A.add("HLpLm", "PEpEm _ID" eProton.ePositron,eklectron);
HPidPool myPids_B( &outputfile );

sl

myPids B.add("HLpLm", "PEpEm_DEDX" eProton ePositron.etlectran);
HHypPlayer * hypd_A = new HHypPlayer(myHyps, myPids_A):
HHypPlayer * hypd_B = new HHypPlayer(myHyps, myPids_B);

ypd A->add( tCut! ); // tCut! will be a graphical PID cut
ypa_B->add( tCut? ); // tCutZ will be a graphical DEDX cut
gHades->getTaskSet(context)->add(hypd A);
gHades->getlaskSet(context)->add(hypd B);




HTrackCut

HTimeCut

HGraphCut

HDedxCut

Base (interface) class. It can open
and retrieve as many files and cuts (TH1*
and TCutG* objects) as you may need.

Cuts can be applied in any order and
at any reconstructor (that is, between
two consecutive data levels).

Some standard cuts are provided.




Cuts

———

I”

Cuts have labels! If you choose "al
the cut will be applied to all patterns
(combinations) of a given data pool. If you
name it i.e.”EpEm” it will be applied only to
a pattern with the same label!

/

HTimeCut

G

HDedxCut

Defining and adding cuts: /
HTrackCut tCut("all");
HGraphCut tCut2("all","M3_PIDCLTS.root");

hyp->add( tCut );
hypd->add( tCut2 );

For example:

Cuts are written in the user directory, all

have to be derived from HCut class. The user
links with the libPat.so library. No changing

the base code! (future: not during this training)




Example 10

>"HTrackCut — fine hadror;/lepton selection

® The cut is meant to act on HParticlePool

* HParticlePool objects are filled from HPidTrackCand but the lepton
selection is based on quite large correlation window (RICH-MDC).

® Itis necessary to make a finer correlation. User has to draw
A versus sin 0 * Ap (where AO = Oz, — Ovipe
AQ = Qricy — Pupce) @and prepare parameterization of
an elliptic correlation window (as a function of momentum)

» HlrackCut checks the correlation for lepton candidates and if there
is no track correlation with RICH ring the candidate becomes
again a hadron candidate.

* If you open hhypdata.h file you will see a lot of numbers — this is
some parameterization for pp@1.25 GeV, prepare your own!



Example 10

//H'FﬁCut time reconstructlon

* The cut is meant to act on HPidPoaol

In elementary reactions measured by means of a HADES
spectrometer we often ;-) had no START detector therefore
no absolute time calibration

Only relative time between particles is available therefore at least
two particles are necessary (in experiment this is the case but in
simulation with ”single tracks” — not)

All particles can be taken as “"reference” particle but with some
priorities (hit in TOF better than in TOFino, lepton better than
hadron)

Important: in this cut | calculate 2 (chi2) which is a parameter
of further the best combination selection. If you do not
reconstruct the time you have to calculate y2 anyway.



I —————

="HGraphCut — graphical cut for PID

* The cut is meant to act on HPidPool
* Definition of the object requires also a file containing the cuts

HGraphCut tCut("all”,"MY_PIDCUTS root”);

® HGraphCut has usually pointers i.e. [Cuth *p_cut; which are assigned
to cuts read from file in the constructor, i.e. p_cut = getbut("p_cut”);

® Selection is just based on a check
if (p_cut) return p_cut->IsInside( beta, mom );
for all particles in a combiantion.

* If any of these checks fails, the HHypCandidate object is
deactivated: pHyp->setActive( false );

* Exactly the same for HDedxCut

® Hint: name your cuts with p_cut, ep _cut, em cut and so on, and you
even do not need to change the code as it is now available.



Life
example

This is only part
of the code
relevant to

the PAT

configuration.

The rest see
main.cc

HOutputFile outputFile( "test.root” , "recreate” );

HParticlePool myParticles; //HParticlePool myParticles( &outputFile );
myParticles.add("all",eHadronPos,eHadronNeg,eLeptonPos,eLeptonNeg);

HHypPool myHyps; //HHypPool myHyps( &outputFile );
myHyps.add("HLpLm",eHadronPos,eLeptonPos,eLeptonNeqg);
myHyps.add("HLpLp" eHadronPos,eLeptonPos,eLeptonPos);
myHyps.add("HLmLm" eHadronPos,eLeptonNeg,eLeptonNeg);

HPidPool myPids( &outputFile );

myPids.add("HLpLm", "PEpEm" eProton,ePositron,eElectron);

myPids.add("HLpLp", "PEpEp" eProton,ePositron,ePositron);

myPids.add("HLmLm", "PEmEm",eProton,eElectron,etlectron);

HTrackPlayer * hyp = new HTrackPlayer( myParticles );
HParticlePlayer * hypZ = new HParticlePlayer(myParticles, myHyps);
HHypPlayer * hyp3 = new HHypPlayer(myHyps, myPids);

HTrackCut tCut("all");

HGraphCut tCut2("all","M3_PIDCUTS.root");
hyp->add( tCut );

hyp3->add( tCut? );




PAT can be used in any analysis where

you have a certain particle (1-4) combination
* There is full event information available

you can reconstruct your data on event basis
« Easy to adjust any kind of reaction to analyze
All reactions processed in one run

* You can write the output to more than one file
* Full combinatorics done automatically
 Easy to add any variables to be stored

* Time recalibration option, PID cuts, dEdx cuts...
» Output: optional on any level: ntuples

~<:ﬂm33C

0 investigate more than one combination in
ke them dependent event by event) it is

u have to write your piece of software (FAT -
ol ©) which reads ntuples entry by entry,
umber and does the correlation (selection).




