
Die HODO Library

The software for the hodoscopes is capsulted in libHodo library. The HHodoDetector
is de�ned for ten modules with 128 channels each. As the hodoscopes are read out by
multihit TDCs, the software is able to store several hits per channel per event. The exact
number depends on the level of analysis.

The fact that now di�erent detector types are using the hodoscope class introduces
additional complexity. Di�erent detector types need for example di�erent hit�nders. In
this case the hit�nder (or other task) is not running on all hodoscope modules, but it is
limited to only one module (remark: In the future this could also be done by adding a
new parameter container which stores that information). At the moment this is done by
adding an option line to the HHodoTaskSet::make() function which tells the taskset the
detector types. The exact syntax might change, therefore check the sourcecode details.

Classes which are common to all detectors and/or not especially relevant for HHodo,
like parameter-i/o, will not be listed here.

Important dependencies:

HHodoHit2Start and HHodoUnpacker depend on �start� package (for obvious rea-
sons). HHodoTrbUnpacker is based on HTrbBaseUnpacker contained in the �base�
library.

Data storage classes

The hodoscope data is stored in the following classes:

• HHodoRaw - Contains up to four hits with time and width per channel. HHo-
doRaw is �lled by HHodoTrbUnpacker or HHodoUnpacker. There are two
ways of �lling this category, �ll(time,width) (as used by HHodoTrbUnpacker)
and �ll_lead(time) / �ll_trail(time) (used by HHodoUnpacker). The second one
calculates the width by itself and takes care about hits without leading or trailing
time. Hits which have only a trailing time are discared! The �ll functions take care
about hits which exceed the maximum number of storable hits. In such a case the
multiplicity will be further increased, but not time/width will be stored. The return
value of the �ll function will be false (this does not imply an error!). In any case,
no over�ow checking has to be done by the unpacker.
Reading data from HHodoRaw is done by calling getTime(n) / getWidth(n) whe-
re n is the number of hit to return, starting at one. An over or under�ow will return
an error. The caller is responsible to check that n is inside range, for instance by
checking against the getMaxMult() return value. The time and width of an un�lled
hit is alway -1. The number of hits can be asked for by getNHits(), which might be

1



larger than the maximum multiplicity of four!
Please do not check against number four as this number could (but most likely will
never) be increased. Check always the function getMaxMult() instead.

• HHodoCal - Containing Time and ADC, up to four, same as on raw Level. Note:
Calibrator will not �ll for than four hits, thus number of hit will (at least at the
moment) di�er from raw level and not exceed four. The behaviour is nearly the
same as the raw level category, there are only small di�erences in the function
names. The �ll function is replaced by setTimeAdc() and width is always adc after
calibration. The time and width of an un�lled hit is alway −106 and -1 accordingly.

• HHodoHit - Until now only one hit per module is supported! Reason: Events
with more than one hit in start detector will be discarted anyway. In the future
this should be changed (especially for pion beam).

Unpacker tasks

• HHodoTrbUnpacker - This is the default unpacker for hodoscope data. It reads
TRB data (board/subevent id has to be given by parameter) and �lls the HHo-
doRaw category. This tasks is derived from HTrbBaseUnpacker where all the
real unpacking and error handling takes place. Using TrbLookup. The time correc-
tion is done based on the TRB software version if not disabled by disableTimeRef().
In addition this task is creating (if enabled by enableControlHistograms()) diagno-
sis plots. On these plots the TRB windows can be checked as well as the software
windows set in HodoRefHitPar. The �rst plot (�TRBDiagRaw_id�) contains the
leading time for all channels of the TRB before time reference substraction (do
not mix this up with the trigger substraction inside TRB!). In channel second part
of the histogramm the same channels appear under the condition that the leading
time was inside the raw time cuts de�ned by HodoRefHitPar. Note: on the left
side all active channels of the TRB appear, on the right side only the ones which
are connected to Hodoscopes. In the second plot (�TRBDiagDif_id�) the leading
time is plotted after the time reference substraction under the same conditions as
in the �rst plot. Both plots are saved to postscript �les and to the unpacked root
dst �le.
TheHTrbBaseUnpacker is able to stored 10 hits per channel, theHHodoTrbUn-
packer will �ll all hits inside the given time window insideHHodoRaw which will
accept all, but only store the �rst four hits.
Even so the time reference is substracted, the raw time can never be negative, be-
cause there is always a large positive number added (40000 corresponding to 4µs,
which is bigger than any useful time window in the TRB).

• HHodoUnpacker is unpacking data from the standard CAEN 32 channel TDC
plus the CAEN v1190 multihit TDC. It is only used in cases where on of these
VME modules is used in the TOF/Trigger/Scaler crate (compatibility with �les

2



taken before 2006). The Unpacker works on subevent with id 416 and is using the
HodoLookup table. There should be no reason to use this task again as in the
present and future all hodoscope data is read out by the TRBs.

The following tasks are connecting the storage classes:

• HHodoCalibrator is reading data from HHodoRaw, doing calibration using
HodoCalPar and then storing the data again in HHodoCal. The calibration for
the time is using a slope and an o�set parameter tnew = told · slope + o�set. For
the adc (which is the width of the signal) parameter containers are existing, but
they are not used. The corresponding code is commented out, the width is copied
without any processing, because up to now the adc values are neither used nor
is there a way of creating these parameters. As there is no way to calibrate non
existing data, the maximum hit number is four, higher multiplicieties are discarted.

• HHodoHitFDiamond is the hit�nder for diamond detectors connected to TRBs.
This hit�nder is not a copy from the Start detector class! It is only looking for hits
in one strip, without any fancy timing or amplitude calculation if more than one
strip was hit. If more than one stripe was hit no hit is generated. Because of the
simplicity it can also be used for the old scintillating bar hodoscopes, where the
probability of a particle hitting to stripes is practically zero. The preformance is
not very good as this task was only build as a quick solution for the new diamond
detectors read out by the TRBs. The hit�nder is using HHodoCal data and is
applying the cut de�ned inHodoRefHitPar before checking the multiplicity of hit
stripes. On which of the hodoscope modules this task is working has to be de�ned
by set_mod(module).

• HHodoHitFFiber is the hit�nder for the scintillating �ber hodoscopes, wher the
probability that are particle is �reing more than one �ber is ~60%. The task will
generate hits even if the multiplicity inside the time windows is higher than one. At
the moment the alorithm check that is quiet simple: Only mulitiplicities up to three,
where all �bers are neighbours, are taking into account. No energy checks or any
other fancy pattern search is done. The preformance could be signi�cantly improved
by that. The hit�nder is using HHodoCal data and is applying the cut de�ned in
HodoRefHitPar before checking the multiplicity of hit stripes. On which of the
hodoscope modules this task is working has to be de�ned by set_mod(module).

• HHodoHit2Start - This task copies hit data from hodo hit to start detector hit
category. This is needed for compatibility with software which relies on diamond
start detector signal in the HStartHit category, for example TOF and TOFino
code. As we did not want to change these parts of software this workaround task
was implemented. On which of the hodoscope modules this task is working on has
to be de�ned by set_mod(module).

3



Parameter tables

Following is the list of parameter containers used by the Hodo library. There are examples
for every parameter.

• HodoLookup is the lookup table which is only used by the (depreciated) HHo-
doUnpacker. It is only needed if TDC data from the �TOF/Trigger/Scaler Crate�
has to be imported into a Hodo detector module.

# Lookup tab l e f o r the Hodo unpacker
# Format :
# c ra t e s l o t channel module s t r i p
[ HodoLookup ]
3 1 0 1 0

• TrbLookup is the lookup table for all TRB boards. It is connecting board ID and
channels with detectoty type and corresponding module and channel. Attention:
TrbLookup is shared by Hodo, Forward Wall and RPC detectors, which share the
same table. For an update of the table into the database this has to be taken into
account!

# Lookup tab l e f o r the TRB unpacker
# Format :
# subeventId TrbChannel d e t e c t o r s e c t o r module c e l l s i d e
# de t e c t o r s : T−TOF, F−Tofino , S−Start , H−Hodo , W−ForwardWall , R−RPC)
# s i d e : l−l e f t , r−r i ght , m−middle , u−up , d−down
[ TrbLookup ]
806 64 H 0 1 80 m

• HodoRefHitPar contains additional parameters which are used by the HHo-
doTrbUnpacker and the HitFinders. The �rst two parameters are channel windows
for the unpacker, signals outside these windows are not taken into account (in chan-
nel numbers, normally 100ps). The second pair is a time cut for the hit�nders (in
ns).

# Reference Hits f o r Hodo
# Format :
# Modul UnpLow UnpHigh HitfLow HitfHigh
[ HodoRefHitPar ]
0 30000 40000 32500 32600

• HodoCalPar stores the calibration parameters for the hodoscopes. For every chan-
nel there are two pairs of numbers. The �rst one de�ne the slope and o�set for the
time calibration (slope should be 0.1 for getting from 100ps channel width to 1ns;
o�set is in ns after slope correction). The second pair is not in use yet. The ADC

4



data is at the moment not touched by the calibrator. The code is existing, but its
is commented out.

# Hodo Ca l i b ra t i on parameters
# Format :
# module s t r i p time−s l ope time−o f f s e t adc−s l ope adc−o f f s e t
[ HodoCalPar ]
1 2 0 .1 0 .0 1 .0 0 .0

Example code

Example source code for unpacking, calibrating and hit�nding. The pseudo code contains
only the for the hodoscope stu� necessary lines, all common initialization has been left
out.

//−−−−−− de f i n e de t e c t o r −−−−−−
Int_t nHodoMods [ 4 ] = {1 , 1 , 0 , 0} ; // a c t i v e modules
spec−>addDetector (new HHodoDetector ) ;
spec−>getDetector ("Hodo")−>setModules (−1 ,nHodoMods ) ;
//−−−−−− add unpacker f o r TRB 801 −−−−−−
HHodoTrbUnpacker ∗ tp ;
tp=new HHodoTrbUnpacker ( 8 0 1 ) ;
tp−>enableContro lHistograms ( ) ;
source−>addUnpacker ( tp ) ;
//−−−−−− now c a l i b r a t e data −−−−−−
taskSet−>add ( new HHodoCalibrater (" hodo . c a l " ,"Hodo ca l ") ) ;
//−−−−−− h i t f i n d e r f o r module 0
HHodoHitFFiber ∗ t ;
t=new HHodoHitFFiber (" hodo . h i t fF " ,"Hodo 0 h i t f " ) ;
t−>set_mod ( 0 ) ;
taskSet−>add ( t ) ;
//−−−−−− h i t f i n d e r f o r module 1 −−−−−−
HHodoHitFDiamond ∗d ;
d=new HHodoHitFDiamond(" hodo . h i t fD " ,"Hodo 1 h i t f " ) ;
d−>set_mod ( 1 ) ;
taskSet−>add ( d ) ;
//−−−−−− copy module 1 to s t a r t h i t category −−−−−−
HHodoHit2Start ∗h2s ;
h2s=new HHodoHit2Start (" hodo . h i t 2 s t a r t " ,"Hodo Hit2Star t " ) ;
h2s−>set_mod ( 1 ) ;
taskSet−>add ( h2s ) ;

Remark:

5



Calibration and hit�nding can also be done with the HodoTaskSet by callingmake(��,�real,�ber=0,diamond=1,startcopymod=1�)

with the apropriate option string.

6


