

Electronic readout Test

We, 23.11-27.11.2011

Beam Properties

Beam of: Protons Energy: 3 GeV Intensity: 100 Hz - 10 kHz

Most time the detector was 3cm out of the beam line (too high Intens.)

Detector Properties

Double sided strip detector 500 µm thick 2x128 channels 34.5x34.5 mm Strip width: 200 µm

Each side was read out by one Exploder Exp0 -> positive polarity Exp1 -> negative polarity

Definition of Hits

A **Hit** is defined as a signal which is above the internal NXYTER threshold

Trigger Input

As external trigger the scintillator in the Beam Pipe model was used or the pulser signal This signal was injected in the following channels Exp0: Channel 124, 120 Exp1: Channel 6,2

Information

The following pictures are **online pictures** taken on the first day with beam. The settings for the detector where not yet fine tuned in consequence we had a high noise rate for this analyzed file. The ADC signal from the NXYTER is already inverted by the analysis.

Measurement

File: J111124-00-57 Not in Beam line Protons:

Exploder 0

Exploder 1

Measurement

File: J111124-00-57 Not in Beam line Protons:

Expected shape from noise

Exploder 0

Exploder 1

due to a low threshold and loose time correlations most entries are from noise. They overlay the signal from particles

Noise Reduction

Two possibilities:

- 1)Noise measurement and cut on ADC channels. Offset has to be corrected for each channel (not possible for us in the online analysis)
- 2)Noise reduction by cuts on trigger-time correlation and multiplicities on the detector. (possible in the online analysis and shown on the following slides)

Observables for Noise reduction

Noise occurs in

- low Aux. units (high ADC channels from the FEB)
- high multiplicity events (common noise on detector)
- Events that are not time correlated with the trigger

Exploder 0

Exploder 1

Observables for Noise reduction

Noise occurs in

- low Aux. units (high ADC channels from the FEB)
- high multiplicity events (common noise on detector)
- Events that are not time correlated with the trigger Expected signal

Trigger Time Correlation

Exploder 0

Exploder 1

Trigger Time Correlation

Exploder 0

Exploder 1

Good signal around +-20ns

Exploder 0

Exploder 1

Exploder 0

Good Signal Mult. < 12

Exploder 1

Hit Distribution on the detector

Multiplicity correlation of the two detector sides

Hit Distribution on the detector

Multiplicity correlation of the two detector sides

•Where is the scintillator correlation ?

Exploder1 has hits of all multiplicities equally distributed -> high noise

Spectra after time cut +- 20 ns

raw data

Exploder 0

Exploder 1

Cut on Time correlation of Exp0

Exploder 0

Exploder 1

Cut on Time correlation of Exp0 && Exp1

Exploder 0

Exploder 1

Multiplicity Correlation 2D

Cut on Time correlation of

Exp0

Exp0 && Exp1

Multiplicity Correlation 2D

Cut on Time correlation of

Exp0

Exp0 && Exp1

Hit correlation in the Detector

Cut on Time correlation of

Exp0

40

60

80

Exploder 1

120 Channel Exploder1

100

Exploder 0

Hit correlation in the Detector

Cut on Time correlation of

Exp0

Exploder 0

Exploder 1

After time cut the correlation with the scintillator becomes visible in the hit distribution

Raw Exp1 vs Exp 2 correlations

Spectra after multiplicity cut < 12

Time and multiplicity Cut

ADC channel distribution

E. Epple, P. Koczoń, R. Lalik

E. Epple, P. Koczoń, R. Lalik

Summary

Two readout Systems were tested

- •A clear Time correlation with the trigger is visible from some signals.
- After time and mult. cut a clear correlation with the scintillator is visible in the hit distribution
 The ADC channels show some

indication for protons

What remains to be done:

Determination of the efficiency of the electronic readout

Backup

Hit distribution per channel

Measurement

Exploder 0

Measurement

Exploder 0

Measurement

Exploder 1

Measurement

Exploder 1

ADC value per channel

Raw ADC vs. channel distribution

Exploder 0

Exploder 1

Distribution with time cuts

Cut on Time correlation of Exp0

Exploder 0

Exploder 1

Distribution with time cuts

Cut on Time correlation of Exp0 && Exp1

Exploder 0

Exploder 1