Strangeness with Pion Beams

Elementary Reactions

- * Channels and Tools
- * Expected Statistics

π+A:

- * K0, K+ in cold nuclear matter: what can we still do?
- * K⁻: Absorption Measurements
- * Λ : analysis of the kinematic variables and femtoscopy

Kaon and Antikaon Production in π +p collisions

$$\pi^- + p@1.7 \,\mathrm{GeV/c}$$

Threshold:

Σ ⁻ K ⁺	≈ 1.035 GeV/c
ΛK ⁰	≈ 0.896 GeV/c
$\Sigma^0 K^0$	≈ 1.031 GeV/c
φ+n	≈ 1.559 GeV/c

 $\sigma_{TOT}(\pi^- + N) = 34mb @1.7GeV/c$

Σ ⁻ K ⁺	≈ 0.14 mb
ΛK^0	≈ 0.16 mb
Σ ⁰ Κ ⁰	≈ 0.14 mb
Λ (1405) Κ ⁰	≈ 0.04 mb
η+n	≈ 0.52 mb
ω+n	≈ 1.84 mb
φ+n	≈ 0.03 mb

$$\sigma(s) = a \cdot \left(1 - \frac{s_0}{s}\right)^b \cdot \left(\frac{s_0}{s}\right)^c$$

SIBIRTSEV, A. CASSING, W. *arXiv:nucl-th/* (1998)

Feasibility Studies

Baryon Analysis

Meson Analysis

Analysis Tools

Pluto Events Geant DST Physics Analysis

+ Cut on Neutron missing mass

+ Kinematic Refit

Rates

 $\sigma_{TOT}(\pi^- + N) = 34mb @1.7GeV/c$ $\pi^{-} + p@1.7 \,\mathrm{GeV/c}$ $Reaction_{day} = \Phi_{\pi^-} \cdot I_{Prob}$ $I_{prob} = \sigma_{tot} \cdot L \cdot \rho \frac{N_A \cdot Z}{M_{max}}$ $I_{prob} = 34mb \cdot 5 \cdot 10^{-2}m \cdot 71Kg/m^3 \frac{6,02 \cdot \frac{10^{23}}{mol} \cdot 2}{2.02a/mol}$ $I_{prob} = 0.0072$ For a 5 cm long LH₂ target $\Phi_{\pi^{-}} = \frac{\pi}{s} \cdot \frac{s}{day} \cdot Deadtime \cdot Duty Factor$ $\Phi_{\pi^{-}} = 3.6 \cdot 10^5 \frac{1}{s} \cdot 8.64 \cdot 10^4 \frac{s}{day} \cdot 0.3 \cdot 0.8$ $Reaction_{day} = 5.37 \cdot 10^7$

Exclusive and Semi-Exclusive Analysis: $K^0\Sigma^0$

Sigma⁰ + K⁰ Exclusive Analysis:

Cut on Lambda Cut on KO Anti-cut on wrong Lambda+KO combinations. Kinematic-Refit on KO

Semi Exclusive Analysis:

Cut on K0 Kinematic-Refit on K0

!! ONLY KOS have been simulated, hence a further factor 0.5 should be considered!

Exclusive and Semi-Exclusive Analysis: $K^0\Lambda$

Lambda + K⁰ Exklusive Analyse:

Cut on Lambda Cut on K0 Anti-cut on wrong Lambda+K0 combinations. Kinematic-Refit on K0

Semi Exclusive Analysis:

Cut on K0 Kinematic-Refit on K0

!! ONLY KOS have been simulated, hence a further factor 0.5 should be considered!

Expected Rate/ day

1 day = 3 shifts	$\Sigma^- K^+$	ΛK^0	$\Sigma^0 K^0$	
Cross-sections [mb]	0.14	0.16/ <mark>2</mark>	0.14/ <mark>2</mark>	$\sigma_{TOT}(\pi^- p) = 34mb$
Production/day	221.117	126350	110.000	
Reco Efficiency E	$14\% \cdot (0.9)^2 \cdot 0.95 *$	0.7%	0.6%	
Reco Efficiency SE	/	4.4%	4.4%	
Reconstruction/day E	24.000	900	700	
Reconstruction/day SE	. /	6500	5.000	

*: 0.95 =TOF Purity, 0.9= Purity dE/dx Both numbers are included in the other two analyses already

Factor 2 because we only see KOs

$\Lambda(1405)$ in π +p reactions

Shift Puzzle

6

p+p and π +p

Cut on KOs inv Mass Cut on 3π Miss Mass (Σ^+) KO Missing Mass -> $\Lambda(1405)$

Conclusions I

Threshold:

Σ ⁻ K ⁺	≈ 1.035 GeV/c
ΛK ⁰	≈ 0.896 GeV/c
Σ ⁰ Κ ⁰	≈ 1.031 GeV/c

Enough stastics for PWA in 2 weeks of beam, even varying the energies. -> Combined PWA

 Λ (1405); Threshold: Ekin= 1.3 GeV **4** HADES publications with **800 counts** 12.500 counts estimated for 25 days of beam

Production Cross-Section

 $p + A \rightarrow \omega/\rho + X$

π+A-> φ/K⁺K⁻ +X

Low Interaction Probability -> Production in the whole volume Strong Interaction -> Production close the surface -> Production of secondary π

-> Production on the surface

 $\sigma(\text{prod}) \sim A$

 $\sigma(\text{prod}) \sim A^{0.8}$

 $\sigma(\text{prod}) \sim A^{2/3} + ..$

This is rather Model Dependent!!

Hadron In-Medium Modification

There are several scenarios.. 2 examples: Old One: Brown-Rho scaling (1992)

$$m = m_0 \left(1 - \alpha \frac{\rho}{\rho_0} \right)$$

One of the new: QCD Sum-Rules

$$-Q^{2}\int ds \frac{\mathrm{Im}\Pi_{Had}(s)}{(s+Q^{2})s^{2}} = A(Q^{2}) + \frac{1}{Q^{4}} \left(B \cdot \left\langle \overline{q} q \right\rangle_{med}\right) + C \cdot \left\langle G^{2} \right\rangle + \ldots \right) + \frac{1}{Q^{6}} \left(D \cdot \left\langle q^{4} \right\rangle + \ldots \right) + \ldots$$

Kaon in Matter

Mean Field Dynamics C. Fuchs Progr. In Part and Nucl. Phys. 56 (2006) 1-103

$$\begin{bmatrix} \left(\partial_{\mu} \pm iV_{\mu}\right)^{2} + m_{K}^{*2} \end{bmatrix} \phi_{K^{\pm}}(x) = 0 \quad \text{Klein-Gordon equation with Mesons and Baryons as DOF} \\ m_{K}^{*} = \sqrt{m_{K}^{2} - \frac{\Sigma_{KN}}{f_{\pi}^{2}}} \rho_{S} + V_{\mu}V^{\mu} \quad \text{Effective or Modifies Kaon Mass} \\ \hline V_{\mu} = \frac{3}{8f_{\pi}^{2}} j_{\mu} \quad \text{Vector potential attractive for K- repulsive for K+} \\ \hline \Sigma_{KN} = \text{Scalar potential}, ~300-450 \text{ MeV}, \text{ same for K+ and K-} \end{aligned}$$

How does the mass change as a function of the density of the environment? Strange condensate shows this dependency:

$$\frac{\left\langle \rho \middle| \overline{u}\overline{u} + \overline{s}\overline{s} \middle| \rho \right\rangle}{\left\langle \overline{u}\overline{u} + \overline{s}\overline{s} \right\rangle} \approx 1 - \frac{\Sigma_{KN}}{f_{\pi}^2 m_{\pi}^2} \rho + \dots$$

$$m_K^{*2} = m_K^2 - \frac{\Sigma_{KN}}{f_\pi^2}\rho + \vartheta(k_F^4)$$

Our Understanding of the Potential

Fuchs et al., ...

VALID ONLY FOR KAONS

$$m_K^* = \sqrt{m_K^2 - rac{\Sigma_{KN}}{f_\pi^2}}
ho_s + V_\mu V^\mu$$

 $V_{\mu} = \frac{3}{8f_{\pi}^2} j_{\mu}$ vector potential

$$k_{\mu}^{*}=k_{\mu}-V_{\mu}$$
 effective momentum for K⁰/K⁴

$$E^* = \sqrt{k^{*2} + m_K^{*2}} + V_0$$

effective energy for K⁰/K⁺

Here no isospin splitting for K⁺ and K⁰, but can be implemented

Choice of the constants \rightarrow strength of the potential

VALID ONLY FOR KAONS

As implemented by Theo

 $\Sigma_{KN} = 450 \text{ MeV} \qquad f_{\pi} = 93 \text{ MeV}$

$$f_{\pi}^{*2} = 0.6 f_{\pi}^2$$

 $V_{\mu} = \frac{3}{8 f_{\pi}^{\star 2}} j_{\mu}$

in-medium pion decay constant appears only in the vector part of the potential

Another option (no chiral symmetry restoration effects)

 $\Sigma_{KN} = 350 \text{ MeV}$ + vacuum pion decay constant

Is there another motivated choice of the constants?

In-medium kaon potential as seen by kaons in pNb

most central collisions

Toy potential vs. ChPT potential

VALID ONLY FOR KAONS

100

90

80 70

60

50

40

30

20

10

 $m^* = m_{vac.} + U_0 \cdot \rho_B / \rho_0$ $E^* = \sqrt{m^{*2} + p^2}$ $U = E^* - E_{vac.} = E^* - \sqrt{p^2 + m^2}$ p, GeV/c p, GeV/c 1.2 100 1.2 90 80 70 0.8 0.8 60 0.6 50 0.6 40 0.4 0.430 20 0.2 0.2 10 ο.2 ρ. fm⁻³ ο.2 ρ, fm⁻³ 00 0 0.05 0.1 0.15 0.05 0.1 0.15

approximately the same strength set at p = 0, $\rho = \rho_0$

Status of K⁰s in cold nuclear matter

Solid evidence of the shift of the Kaon mass (to be released on Friday)

Ar+KCL @ 1.756 AGeV HADES (Comparison with HSD and IQMD) p+Nb @ 3.5 GeV HADES (Comparison to GIBUU)

 $\pi + A$ FOPI and ANKE but only compared to HSD and IQMD and small statistics (~2000 K)

M. L. Benabderramahne et al., Phys. Rev. Lett 102 183591 (2009)

M. Büscher et al., EPJ A22, 301 (2004)

Available Statistics so far: KAONS

 $\sigma (MeV/c^2)$

 12.80 ± 0.40

 12.58 ± 0.40

 13.50 ± 0.40

 13.75 ± 0.31

 505 ± 0.40

 503 ± 0.40

 505 ± 0.04

 504 ± 0.33

Phase Space Distribution fo KOs

Target	Number of recons. K_S^0	Number of K_S^0 in KINE	Efficiency in %
С	1150	61 820	0.93
Pb	1020	50 999	1.00

K_{S}^{0} Cross-Section π +A

$$\sigma(\pi^- + A \rightarrow K^0 + X) = \sigma_{eff} \cdot A^b$$
$$\sigma_{eff} = 0.87 \pm 0.13 \ mb$$
$$b = 0.67 \pm 0.03$$

Sum of elementary cross-section

Factor 2: Multiple-step processes? Same Trend as a fc. of A

The A dependence of the Kaon production is more under control Since K^+ and K_s^0 are not absorbed in nuclear matter they can serve as reference for K⁻

Reconstructed K⁺: Ratio

HELMHOLTZ

GEMEINSCHAFT

Comparison Low and High Beam Energy: K⁰S

Comparison Low and High Beam Energy: K⁺

Model: GiBUU after Lapidus tuning

Kaonic Atoms and Kaon Absorption

If one looks at **kaonic atoms** the optical potential used to parametrize the interaction looks like:

J. Yamagata et al. arXiv:nucl-th/0503039v3

$$2\mu V_{opt}(r) = -4\pi\eta a_{eff}(\rho)\rho(r) = -4\pi\eta(a_{K^{-n}}\rho + a_{K^{-p}}\rho) + 2\mu U_{Abs}$$

 $\eta = 1 + \frac{m_K}{M_N}$

 $a_{K^-n}, a_{K^-p} = scattering lengths$ Real part only!

The Absorption part as comes from the imaginary part of a_{eff} This value gives the absorption at **p=0 How does this depends on the momentum?**

Method:

Inclusive K-

Tag of the K⁻ not coming from ϕ Decay via K⁺K⁻ invariant Mass selection To study absorption of K- without in-medium properties of ϕ

$$R = \frac{T_A}{T_C} = \frac{12 \,\sigma_{K^-}^A}{A \,\sigma_{K^-}^C}$$

As a function of the Kaon Momentum!!

K⁰_S Cross-Section

The A dependence of the Kaon production is more under control Since K^+ and K_s^0 are not absorbed in nuclear matter they can serve as reference for K⁻

Calculations

The A dependence of the Kaon production is more under control Since K⁺ and K⁰_s are not absorbed in nuclear matter they can serve as reference for K⁻

Expected Rates

With a 2.5% Interaction Target

$$\pi^- + p@1.7 \,\mathrm{GeV/c}$$

Target	Particle	$\operatorname{Rate}/\operatorname{day}$
Carbon	$egin{array}{c} K^0_{ m S} \ K^+ \ K^- \ \phi \end{array}$	$5 imes 10^5 \ 5 imes 10^5 \ 3 imes 10^4 \ 252$
Copper	$egin{array}{c} K^0_{ m S} \ K^+ \ K^- \ \phi \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$
Wolfram	$egin{array}{c} K^0_{ m S} \ K^+ \ K^- \ \phi \end{array}$	$2.2 imes 10^5 \\ 3.4 imes 10^5 \\ 1.4 imes 10^4 \\ 680$

Motivation

Λ

Motivation of our work in Munich: Understand the properties and interactions of strange matter

In particular: Interaction of Λ hyperons

TUT COL

What is often done (not by us): Understand interaction with the use of hypernuclei data

Different approach: Study experimental data in p+p and p+A reactions (low collective effects) with help of transport models

Femtoscopy gives us the possibility to investigate ΛN interaction in p+A reactions

Theoretical basics

Theoretical basics:

F. Wang, and S.Pratt, Phys. Rev. Lett. ${\bf 83}~(1999)~3138$

$$C(\vec{p}_{a}, \vec{p}_{b}) = \frac{\mathcal{P}(\vec{p}_{a}, \vec{p}_{b})}{\mathcal{P}(\vec{p}_{a})\mathcal{P}(\vec{p}_{b})} \approx \frac{\int d^{4}x_{a} d^{4}x_{b} S(p_{a}, x_{a}) S(p_{b}, x_{b}) |\phi_{rel}(\vec{p}_{b} - \vec{p}_{a})|^{2}}{\int d^{4}x_{a} d^{4}x_{b} S_{a}(\vec{p}_{a}, x_{a}) S_{b}(\vec{p}_{b}, x_{b})}$$

 $S(p_i, x_i)$: Source function - Probability that a particle is emitted at x_i with momentum $p_i = \phi_{rel}(\vec{p_b} - \vec{p_a})$: relative wavefunction between both particles

> includes all final state interactions (correlations) between the emitted particles

In p+A and π +A collective effects should be negligible so that the correlation depends Only on the strong scattering length. Studies are currently carried out.

Conclusion II

- First π +A large statistics sample for Kaons, Antikaons and Lambda
- 🙂