



#### Update on simulation status

ćlus

Robert Glas 2013/04/17





# **Previous simulations**

- simulation with Pb, Cu and C
- interaction rate 15% (5% per target)
- targets are simulated separately
- primary vertex cuts are not necessary





# New simulation method

- new interaction rate: 7.5% (2.5% per target)
- in GiBUU all three targets (W, Cu, C(graphite)) are simulated separately
- in GEANT they are also simulated separately, but for each target the other two targets are included so that particles can interact with them
- primary vertex cuts (see later)



**HADES** Geometry of the targets in GEANT



|               | W    | Gap  | Cu   | Gap  | С    |
|---------------|------|------|------|------|------|
| Width [mm]    | 2.4  | 16.2 | 3.4  | 16.2 | 6.8  |
| Reaction rate | 2.5% |      | 2.5% |      | 2.5% |

\*graphic by Wolfgang Koenig

Kclus





# Settings in GEANT

- distribution of pion beam on target
  - in Z direction: homogeneous
  - in X and Y direction: Gaussian with  $\sigma=25mm$
  - diameter of target is  $12mm \rightarrow$  approximately homogeneous distribution in X and Y





### "Problem"

- interactions (multiple scattering) of the beam with prior target segments are not taken into account (for Cu and C simulations)
- probably negligible, but has to be checked



So far...



- only data for C and Cu was analysed
- data for W is still simulated in GiBUU
- sufficient statistics for W will maybe be reached in 1-2 weeks





- primary vertex cuts (from EventHeader):
  - fit primary vertex distribution of all events

Cuts

- cuts around maxima with width = 1  $\sigma$
- standard cuts for particle identification:
  - dEdx cuts in MDC and TOF for K- and K+
  - dEdx cuts in MDC for pions
- standard cuts for KOs reconstruction:
  - VerDistX > 15
  - MinTrackDist < 10</p>
  - VerDistA > 7
  - VerDistB > 7
  - Mass squared > 100



 $\pi^{-1}$ 





• Primary vertex distribution of all events





- red lines correspond to 4 Gaussian fit curves (2 Gaussian per peak)
- blue lines correspond to 1 σ cuts



counts



#### Contamination



- Contamination of C in Cu:  $\frac{cont(C)}{total(Cu)} = 1.3\%$
- Contamination of Cu in C:  $\frac{cont(Cu)}{total(C)} = 1.8\%$



#### Distribution of masses: KOs (Cu)













# Distribution of masses:



• On the left side the peak of pions  $(\pi^{-})$  is comming up

Kclus

пп

# Distribution of masses:





- On the left side the peak of pions  $(\pi^+)$  is comming up
- On the right side the peak of protons is comming up

Clus







| Target           | KO/day  | K-/day  | K+/day    | t.length [cm] | r. rate |
|------------------|---------|---------|-----------|---------------|---------|
| Cu               | 140,673 | 37,918  | 636,146   | 0.34          | 2.5 %   |
| С                | 269,326 | 34,843  | 544,670   | 0.68          | 2.5 %   |
| "Old simulation" |         |         |           |               |         |
| Cu               | 380,000 | 80,000  | 1,500,000 | 0.65          | 5%      |
| С                | 600,000 | 120,000 | 1,500,000 | 1.30          | 5%      |
| (Pb)             | 440,000 | 70,000  | 1,400,000 | 0.80          | 5%      |

Contamination for KOs events with other targets is higher because of secondary particles in the primary vertex reconstruction  $\rightarrow$  probably enhances the number of KOs per day.

Due to primary vertex cuts and bisection of reaction rate, the new results for reconstructable kaons are more than half less.