New fits on K^{+} with/without $\mathrm{E}_{\text {loss }}+\mathrm{B}$ correction loss

A. Scordo, LNF (INFN)

18/08/2015

Contents

Mass vs Momentum with/without correction (ProfileX)
Mass vs Momentum with/without correction (From Fits)
$\operatorname{Bin} x \operatorname{Bin}(p \theta)$ fit with gaus+expo+polN
$\operatorname{Bin} \times \operatorname{Bin}(\mathrm{p} \theta)$ fit with exp tails and K histograms
 \title{
Events selection
 \title{
Events selection
 HADES
 PID with dE/dX vs P cuts
}

Vertex cut
$0<\beta<1$

Eloss + B correction

Bad strips rejected
kIsUsed to reject multi hits

Mass vs P in Carbon (ProfileX)

	carbcor		carbnoc	
\%	Entries	151466	Entries	151770
${ }_{0}$ \%	Mean	516.9	Mean	504.5
$\sum 510$	Mean y	493.7	Mean y	493.8
	RMS	126.4	RMS	130.1
$\sum^{\infty} 505$	RMS y	44.37	RMS y	44.39

With cor No cor

Mass vs P in Wolfram (ProfileX)

With cor No cor

Mass vs P in Carbon RPC (fits)

With cor No cor

Mass vs P in Carbon TOF (fits)

Mass vs P in Wolfram RPC (fits)

With cor No cor

Mass vs P in Wolfram TOF (fits)

Sigma vs P in Carbon RPC (fits)

With cor
No cor

Sigma vs P in Carbon TOF (fits)

Sigma vs P in Wolfram RPC (fits)

With cor No cor

Sigma vs P in Wolfram TOF (fits)

Knum vs P in Carbon RPC (cor)

Knum vs P in Carbon TOF (cor)

Sigma vs P in Carbon TOF (cor)

Mass vs P in Wolfram RPC (cor)

Sigma vs P in Wolfram RPC (cor)

Mass vs P in Wolfram TOF (cor)

Sigma vs P in Wolfram TOF (cor)

Fits with exp tails

This are the 2 procedures used to test this possible solution (p θ bin x bin):

1) - Normalize the MCK+ mass spectra to $N_{\text {allmass }} / N_{\text {Kmass }}$

- Normalize the $\exp \pi$ and p mass spectra to $N_{\text {allmass }} / N_{\pi m a s s}$ \& $N_{\text {allmass }} / N_{\text {pmass }}$
- Fit the allmass distribution with $p(0)^{* K} K$ mass $+p(1) * \pi m a s s+p(2) * p m a s s$
- Plot fit results and residuals to check feasibility of the method \rightarrow Knum (not yet done)
RESIDUALS = (Nexp-NTotfit)/Nexp

2) Same as before but using exp $\mathrm{K}+$ mass instead of MC ; in particular, $\mathrm{K}+$ mass distributions are obtaind AFTER the gaus+expo+polN fit by subtraction of the bkg from the allmass spectra.

Problems of meth $1 \rightarrow$ We know that $d E / d X$ selection is not properly working for MC so we are probably introducing biases

Problems of meth $2 \rightarrow$ We know that the fit procedure from which we get the exp distribution is not properly working so we are probably intzoducing biases

Fits in Carbon RPC (MC K+)

Fits in Carbon RPC (MC K+)

Fits in Carbon RPC (MC K+)

Fits in Carbon RPC (MC K+)

Fits in Carbon TOF (MC K+)

Fits in Carbon TOF (MC K+)

Fits in Carbon TOF (MC K+)

Fits in Carbon TOF (MC K+)

Fits in Carbon RPC $(\exp K+)$

Fits in Carbon RPC $(\exp K+)$

Fits in Carbon RPC $(\exp K+)$

Fits in Carbon RPC (exp K+)

Allmass
$\mathrm{K}, \pi, \mathrm{p}$
TotFit

Fits in Carbon TOF (exp K+)

Fits in Carbon TOF $(\exp K+)$

Fits in Carbon TOF (exp K+)

Fits in Carbon TOF (exp K+)

Eloss + B correction doesn' t affect the MvsP trend (still present)

Some fits do not look very good due to strange background behaviour
Possible alternative:

- Build K mass histogram from fit (MC/exp)
- Use π, K, p histograms to fit (normalized) the mass Spectrum

Both methods are not still optimized due also to MC-Exp disagreement Best possibility would be to use MC dist with K dEdX selection and K, π, p PID

Wich one to start K+/K- ratio?

