The HADES IT beam line: an update

T. Hennino (IPN Orsay) 16/4/13

Why new calculations ?

- Tilt angle of the dipole was misinterpreted (and hidden somewhere in the Mirco file)
- Visit at GSI on 6-7 march triggered the discovery
- The real tilt angle of the dipoles is 22.75° (NOT 3.08°)
 (7.5° deviation in bending plane × sin(22.75°) = 2.8°, necessary to lift the beam line at the HADES level, +0.7 m)

in dipoles, $B_x \approx 0.4 \times B_v$

Price to pay: horizontal and vertical are more intimately coupled, in particular chromatic terms in both x and y are present

18/04/2013

How to extract δ (and θ_i , ϕ_i and y_i): I ?

Before, H and V were almost decoupled

$$X = T_{11}x_i + T_{12}\theta_i + T_{16}\delta + T_{126}\theta_i\delta + T_{166}\delta^2$$

$$Y = T_{33}y_i + T_{34}\varphi_i + T_{36}\delta$$

$$Linear system$$

$$2 equations$$

$$2 unknown y_i and \varphi_i$$
No coupling to φ or y_i

$$T_{11}x_i$$
 'neglected'
Separation of θ_i then 3^{rd} order
equation in δ

How to extract δ (and θ_i , ϕ_i and y_i): II ?

Now, H and V are strongly coupled + chromatic terms in vertical

System of 4 non-linear equations with 4 unknown θ_{i_j} , y_i , ϕ_i and δ (x_i term 'neglected') \rightarrow solved iteratively

First results for FDF: with HADES LH2 condition

∆р/р	-6 %	-5 %	-4 %	-3 %	-2 %	-1 %	0 %	1 %	2 %	3 %	4 %	5 %	6 %
Yield (%) After Q9	5.0	8.5	14.6	18.6	25.0	36.6	55.5	60.7	49.1	28.4	20.7	14.0	6.2
Yield (%) x , y <6	0.05	0.57	2.2	6.1	13.3	33.8	55.5	60.7	31.3	11.6	4.6	1.8	0.64
σ _δ (%)	0.6	0.31	0.26	0.23	0.18	0.15	0.13	0.11	0.10	0.11	0.12	0.13	0.14
σ _x (mm)	7.1	3.7	3.0	2.3	1.7	1.2	1.0	1.0	1.2	1.4	1.7	1.9	2.1
σ _y (mm)	0.48	0.41	0.38	0.35	0.22	0.11	0.07	0.10	0.17	0.20	0.25	0.32	0.41

Yields correspond to the initial conditions: $-10. < \theta < 10.$ mrad $-50. < \phi < 50.$ mrad

Useful range [- 4 % , + 5 %]

No loss for $\delta = \Delta p/p = 0$ and 1% Slight asymmetry: positive δ values better than negative ones

Graphic representation of the XY distribution and of the induced cut by the condition |x|,|y|< 6 mm in next slide

First results for FDF: after Q9

∆ p/p	-6 %	-5 %	-4 %	-3 %	-2 %	-1 %	0 %	1 %	2 %	3 %	4 %	5 %	6 %
Yield (%) After Q9	5.0	8.5	14.6	18.6	25.0	36.6	55.5	60.7	49.1	28.4	20.7	14.0	6.2
σ _δ (%)	0.54	0.36	0.28	0.23	0.19	0.16	0.13	0.11	0.11	0.11	0.12	0.13	0.15
σ _x (mm)	6.2	4.4	3.0	2.35	1.75	1.25	1.0	1.0	1.2	1.45	1.65	1.9	2.2
σ _y (mm)	1.2	0.75	0.53	0.36	0.23	0.11	0.07	0.10	0.16	0.20	0.37	0.52	0.76

Yields correspond to the initial conditions: -10. < θ < 10. mrad -50. < ϕ < 50. mrad Resolutions are almost the same as with the LH2 condition, except for $\sigma_{\rm y}$ at the higher δ values.

0

18/04/2013

element layout

Element number	Element nature	Length of element (meter)	Integrated length at the end of the element
22	Drift	3.0	22.053
23	Dipole 2	1.4726	23.525
24	Drift	2.81	26.335
25	Q7 (Hor. Focusing)	1.0	27.335
26	Drift (detector 2)	0.91	28.335
27	Drift	1.9	29.245
28	Q8 (Vert. Focusing)	1	31.145
29	Drift	0.6	31.745
30	Q9 (Hor. Focusing)	0.4	32.145
31	Drift (start of the 48 mm diameter LH2 tube)	0.5	32.645
32	Drift (diamond detector)	0.6	33.245
33	HADES target	0.4	33.645

Resolution: all pions left after Q9

Resolutions in:

- momentum,
- x at the HADES target
- y at the HADES target

For |x|, |y| < 30 mm

Resolution: pions within the LH2 target

Resolutions in:

- momentum,
- x at the HADES target
- y at the HADES target

For |x|, |y| < 6 mm