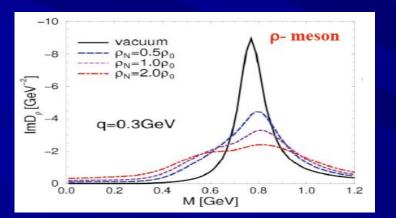
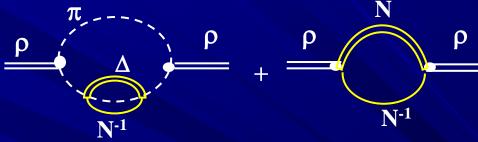


Study of electromagnetic processes with HADES in pion-nucleon reactions

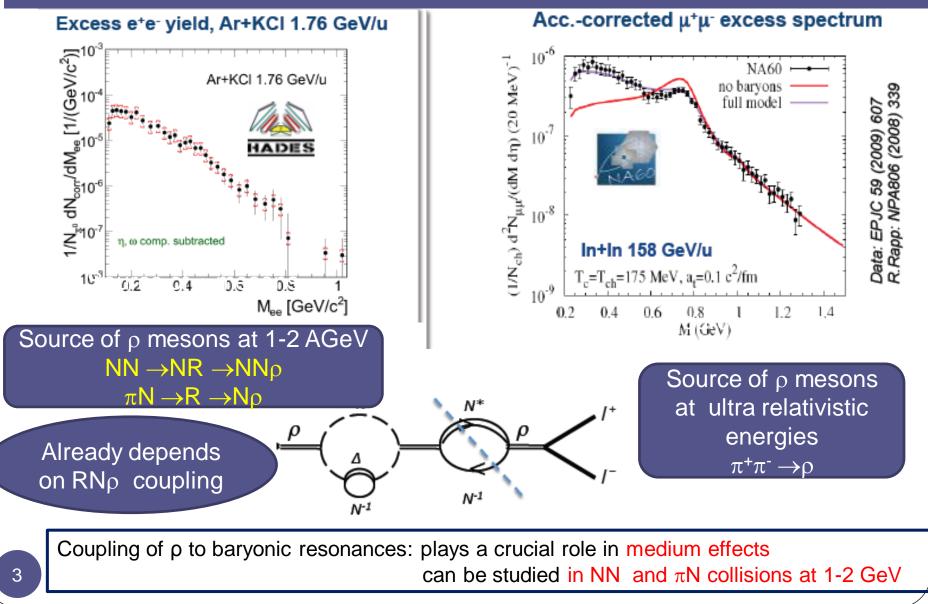
B. Ramstein, IPN Orsay Pion Beam Task Force meeting, 31 October 2013

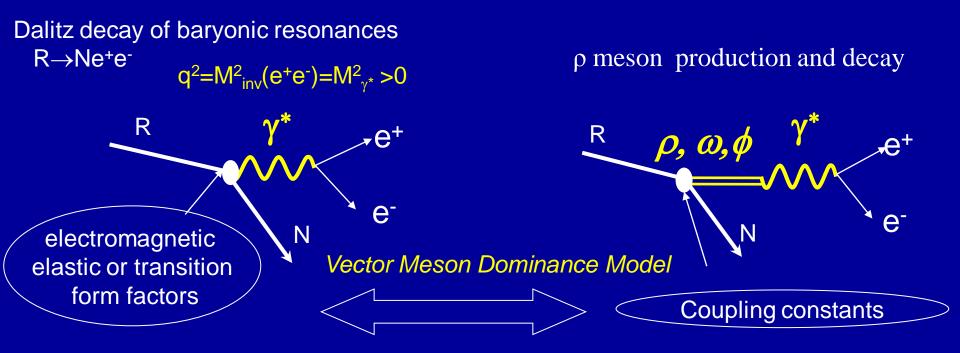




In-medium vector meson modifications:

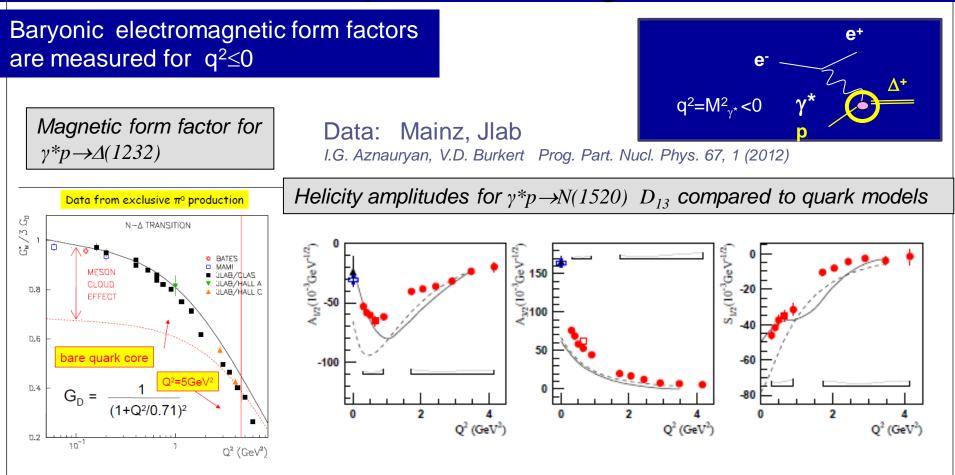
see e.g. Leupold ,Metag,Mosel Int. J. of Mod. Phys. E19 (2010) 147 for a recent review


« in-medium broadening »



Rapp and Wambach EPJA 6 (1999) 415 Rapp, Chanfray and Wambach NPA 617, (1997) 472 In-medium spectral function depends on ρ NN* coupling main players: N(1520), N(1720), Δ (1910)

The ρ meson in hot and dense hadronic matter from SIS18 to SPS



Relation to electromagnetic structure of baryons

q² ≥ 0 : « Time like « region
 electromagnetic form factors are unknown !
 → use models fitted to Space-Like data q² ≤0
 (electroproduction of baryonic resonances)
 Unique way to test the vector dominance model for baryons
 (not possible for elastic time-Like nucleon form factors)

Baryonic transition electromagnetic form factors in space-Like region

No measurement at $q^2 > 0 \rightarrow$ use models fitted on space like data N.B. Time-Like transition form factors can also be calculated on the lattice

Studies of baryonic Time-Like electromagnetic transitions in pp reactions

pp→ppe⁺e⁻ 1.25 GeV ∆ resonance Dalitz decay 2.2 and 3.5 GeV higher lying resonances

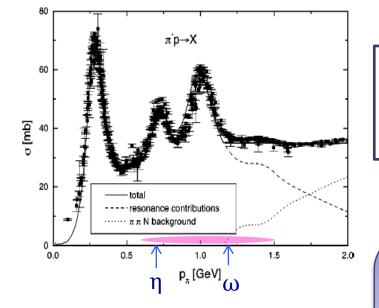
From proton-proton to pion-nucleon experiments

N*/A

N-1

dilepton emission in pp

 ✓ sensitivity to the coupling of vector mesons to baryonic resonances / Time-Like electromagnetic structure
 ✓ complementary information in hadronic channels
 ✓ useful constraints for medium effects


- ✓ uncertainties due to pp interaction
- ✓ many resonances contributing with broad mass distributions
- $\checkmark\,$ small acceptance for exclusive channels

 $\pi^{-}p \rightarrow ne^{+}e^{-}$ below ρ/ω production threshold

Advantages: interaction better known fixed mass of the resonance in s channel much larger acceptance for exclusive channels electromagnetic $\pi^{-}p \rightarrow ne^{+}e^{-}$ hadronic $\pi^{-}p \rightarrow p\pi^{-}$, $n\pi^{+}\pi^{-}$, $p\pi^{0}\pi^{-}$

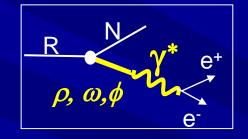
Project of pion beam experiments with HADES

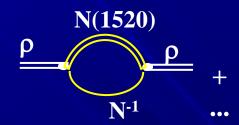
pion momentum 0.6 GeV/caverage pion flux ~ 4 10⁵/s

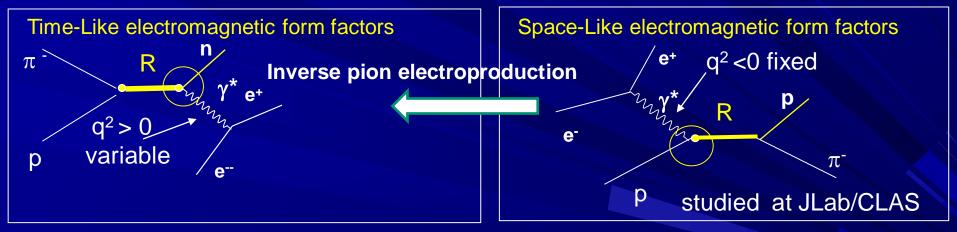
Belongs since the very beginning to the HADES experimental program

updated 2013 program:

- ✓ Based on HADES results
- ✓ Limited by constraints of beam time at GSI




- Strangeness production (K⁺, K⁻, K⁰_S, φ) in π+A
- $\pi^{-}p \rightarrow ne^{+}e^{-}$ below ρ/ω production threshold


• One pion, two pion, one kaon production from an energy scan in π -p reactions

Motivations of $\pi^{-}p \rightarrow ne^{+}e^{-}$ experiments with HADES

"off-shell p production"

$\pi^{-}p \rightarrow ne^{+}e^{-}$ below ρ/ω production threshold at $\sqrt{s=1.52 \text{ GeV/c}^2}$

unique chance

- \checkmark to study the Time-Like electromagnetic structure of N*(1520)
- \checkmark to constrain the in-medium modifications of the ρ meson spectral function

Predictions for $\pi^{-}p \rightarrow ne^{+}e^{-}$

total

1.8

B. Kaempfer, A Titov, R.Reznik Nucl. Phys. A721(2003)583

10⁴

 10^{3}

 10^{2}

 TI^2

A. Titov, B.Kaempfer EPJA 12(2001)217

Coupling constants from quark models or derived from $R \rightarrow N\rho/\omega$ branching ratios M_{ee}=0.6 GeV/c² $\pi p \rightarrow \rho n$ $\pi p \rightarrow \omega n$ N(1535) N(1535) 104 N(1680) N(1440 ⊐² N(1680) 10³ N(1440) ⁺ (1232) ∀ Δ_{1/2}⁻ (1620) · $\Delta_{3/2}^{-}(1700)$ N(1675)

10²

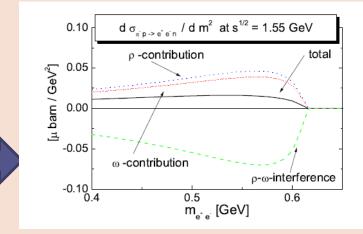
1.5

1.6

s^{1/2} [GeV]

17

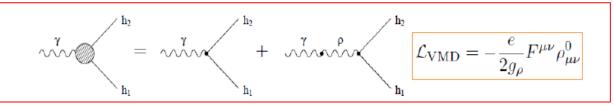
18


M.F.M. Lutz, B. Friman, M. Soyeur Nuclear Physics A 713 (2003) 97-118

1.6

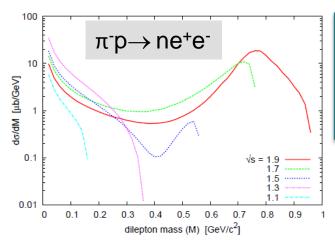
s^{1/2} [GeV]

Coupling constants from hadronic coupled channel model fitted to $\gamma p \rightarrow \rho/\omega p$ and $\pi p \rightarrow \rho/\omega n$ data


✓ overall smaller amplitudes \checkmark D₁₃(1520) has a larger contribution ✓ Very large destructrive interference between I=0 (ω) and I=1 (ρ) contributions

10

Electromagnetic form factors approach


- M. Zetenyi and G. Wolf, Phys.Rev. C86 (2012) 065209
- ρ production is embedded in the em form factor

adjustment to pion photoproduction cross sections of

 signs and strength of RNγ couplings (within the range allowed by the radiative decay widths)

Further studies needed:
✓ Inclusion of ω contribution
✓ Too large cross sections for ρ production

R

+ ρ meson exchange

u channel

R

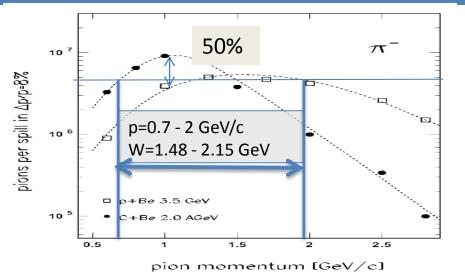
+ Born term

s channel

Very recent GiBUU calculations 10^{3} GiBUU total $E_{kin} = 540 \text{ MeV},$ $p_{lab} = 664 \text{ MeV}$ $\rho \rightarrow e^+e^-$ Janus Weil $\dot{\omega} \rightarrow e^+ e^-$ 10² $\pi p \rightarrow e^+ e^- X$ 10³ GiBUU total dơ/dm_{ee} [μb/GeV] 13(1520) 10¹ S₁₁(1535) $\rho \rightarrow e^+ e$ F₁₅(1680) F₃₅(1905) 10² ሰ 10⁰ ω π 10¹ 10^{-1} πN Brems σ_{ee} [μb] D₁₃(1520 10⁰ $S_{11}^{13}(1535)$ $F_{15}^{11}(1680)$ $F_{35}^{10}(1905)$ 10⁻² 0.2 0.8 0 0.4 0.6 dilepton mass m_{ee} [GeV] 10^{-1} 10` **GiBUU** total $\begin{array}{l} \mathsf{E}_{kin} = 670 \; \text{MeV}, \\ \mathsf{p}_{lab} = 800 \; \text{MeV} \end{array}$ $\rho \rightarrow e^+e^$ ete 'e' te' 10² 10⁻² ρ Nete πN Brems. dσ/dm_{ee} [μb/GeV] D. 10^{1} $S_{11}^{(1535)}$ $F_{15}^{(1680)}$ 10⁻³ 0.5 1.5 F₂₅(1905) 2 0 p_{lab} [GeV] 10⁰ 10^{-1}

10⁻²

0.2


0.4

dilepton mass mee [GeV]

0.6

0.8

Inputs for feasibility studies: update 2013

- measured in 2005:
 - 2.7 10⁻⁵ π ⁻/ion at 1.17 GeV/c in front of the RICH
 - max: 6.5 10¹⁰ N₂ ions=0.5 xSCL
 - 4s extraction time
 - ightarrow 4.5 10⁵ π -/s in spill
 - ightarrow 2.3 10⁵ π ⁻/s in average

- Expected in 2013 :
 - primary beam intensity: 8 10¹⁰ N₂ ions/spill (measured by FOPI, 0.6 xSCL)
 - \rightarrow lower limit of pions at the exit of Q9: 2.2 10⁶ π -/spill (using the measurement in scintillator hodoscope)
 - Extraction time 2s, total spill length 4s (chosen to reduce dead time and load on the detectors)
 - Fraction of beam after Q9 inside the 6mm LH2 target radius: 2/3, see Thierry's simulations
 - \rightarrow 1.5 10⁶ π ⁻/s in spill 3.7 10⁵ π ⁻/s in average

```
Estimates for the 5 cm long LH2 target at 1.1 GeV/c, 80% data taking efficiency, 30% dead time
```

in 4π , 100 % efficiency N/ hour ~ 150 000 σ (mb) N/week ~ 25 x σ (nb)

Existing simulations

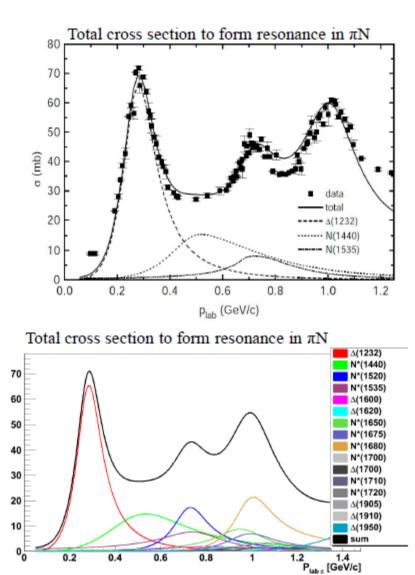
"home made" resonance model Madeleine Soyeur's model

Baryon resonance cross sections

σ_{tot} [mb]

HubertKuc Baryon resonance cross sections calculated like in

> S. Teis et al. Z. Phys. A 356, 421-435 (1997) ٠

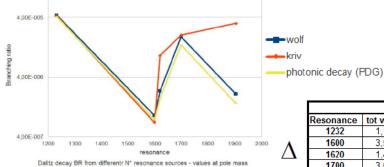

cross section calculated via the Breit-Wigner formula:

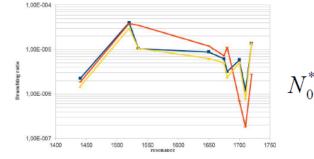
$$\sigma_{\pi\text{-}p \to R \to cd} = \frac{2J_R + 1}{(2S_{\pi^-} + 1)(2S_p + 1)} \frac{4\pi}{p_i^2} \frac{s\Gamma_{R \to \pi^- p}\Gamma_{R \to cd}}{(s - M_R^2)^2 + s\Gamma_{tot}^2}$$

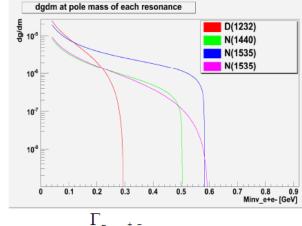
$$\Gamma_{tot}(q) = \Gamma_R \frac{M_d}{M} \left(\frac{q}{q_r}\right)^3 \left(\frac{q_r^2 + \delta^2}{q^2 + \delta^2}\right)^2 \quad \Delta(1232)$$

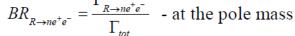
$$\Gamma_{tot}(q) = \Gamma_R \left(\frac{q}{q_r}\right)^{2l+1} \left(\frac{q_r^2 + \delta^2}{q^2 + \delta^2}\right)^{l+1} \quad \text{higher}$$
resonances

for total cross section $\Gamma_{R \rightarrow cd}$ replaced with ٠ Γ_{tot}



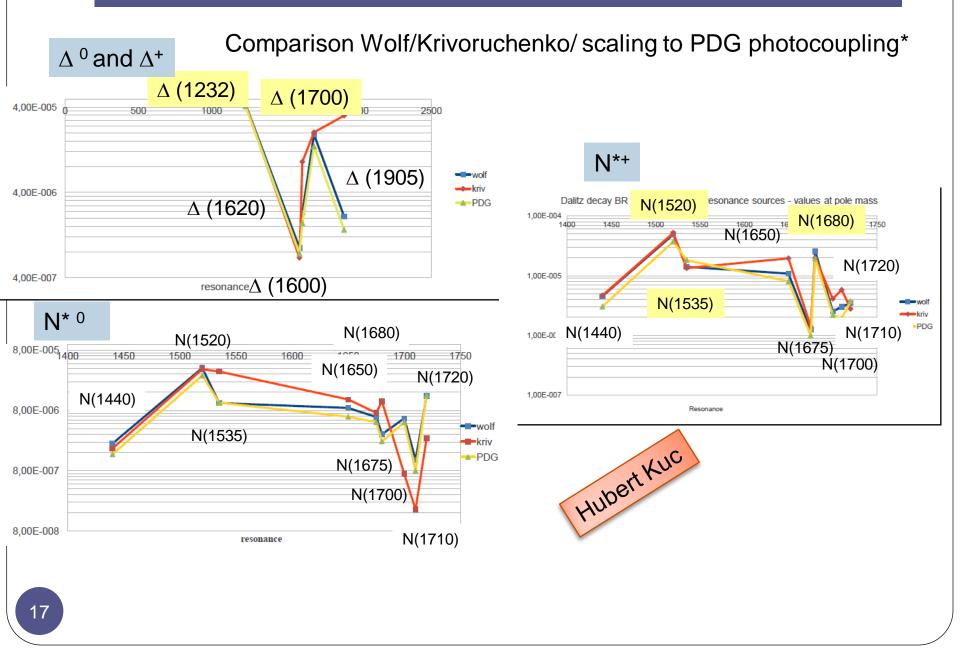

Baryon resonance dalitz decay widths

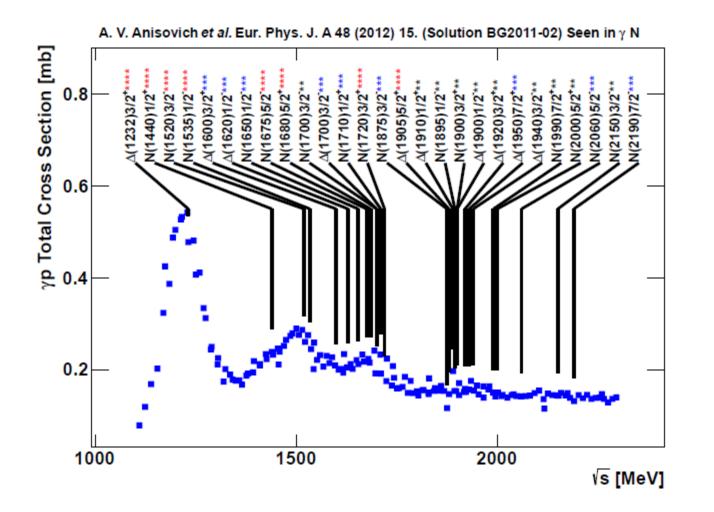

- Hubert Kuc Decay width and branching ratio for resonance dalitz decay calculations based on two models
 - M. Zetenyi, Gy. Wolf arXiv:nucl-th/0202047v1 14 Feb 2002 ٠
 - M. I. Krivoruchenko et al. Annals of Physics 296, 299-346 (2002) ٠


$$\frac{d\Gamma_{R \to Ne^+e^-}}{dM^2} = \frac{\alpha}{3\pi} \frac{1}{M^2} \Gamma_{R \to N\gamma}(M)$$

$$\Gamma_{R \to N\gamma}(M) = \frac{\sqrt{\lambda(m_*^2, m^2, M^2)}}{16\pi m_*^3} \frac{1}{n_{pol,R}} \sum_{pol} |\langle N\gamma|T|R\rangle|^2$$

Dalitz decay BR from differentr ∆ resonance sources - values at pole mass

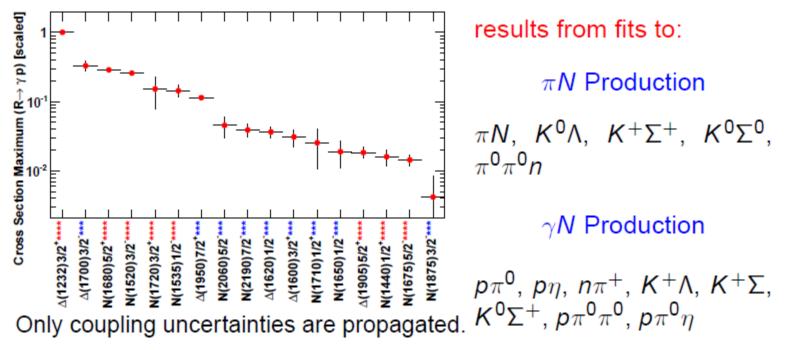




		wolf		kriv		photonic decay (PDG)	
Resonance	tot width PDG	BR e+e-	width e+e-	BR e+e-	width e+e-	BR e+e-	BR ny
1232	1,18E-001	4,34E-005	5,21E-006	4,25E-005	5,02E-006	4,09E-005	5,60E-003
1600	3,50E-001	9,01E-007	3,15E-007	6,86E-007	2,40E-007	7,66E-007	1,05E-004
1620	1,45E-001	2,33E-006	3,50E-007	9,17E-006	1,33E-006	1,75E-006	2,40E-004
1700	3,00E-001	1,91E-005	5,73E-006	2,03E-005	6,10E-006	1,39E-005	1,90E-003
1905	3,30E-001	2,09E-006	6,88E-007	3,18E-005	1,05E-005	1,46E-006	2,00E-004
		wolf		kriv		photonic decay (PDG)	
Resonance	tot width PDG	BR e+e-	width e+e-	BR e+e-	width e+e-	BR e+e-	BR ny
1440	3,00E-001	2,25E-006	6,76E-007	1,87E-006	5,60E-007	1,50E-006	2,05E-004
1520	1,15E-001	4,05E-005	4,86E-006	3,84E-005	4,42E-006	3,03E-005	4,15E-003
1535	1,50E-001	1,06E-005	2,14E-006	3,53E-005	5,30E-006	1,07E-005	1,47E-003
1650	1,65E-001	8,82E-006	1,32E-006	1,21E-005	2,00E-006	6,31E-006	8,65E-004
1675	1,50E-001	6,20E-006	9,30E-007	7,27E-006	1,09E-006	5,11E-006	7,00E-004
1680	1,30E-001	3,21E-006	4,17E-007	1,13E-005	1,47E-006	2,45E-006	3,35E-004
1700	1,00E-001	5,90E-006	5,90E-006	7,08E-007	2,86E-006	5,11E-006	7,00E-004
1710	1,00E-001	1,21E-006	1,21E-006	1,82E-007	6,00E-007	8,03E-007	1,10E-004
1720	2,00E-001	1,39E-005	2,77E-006	2,77E-006	3,14E-006	1,43E-005	1,96E-003

Coupling to photons: who are the main players ?

Baryon Resonance Coupling to the Photon

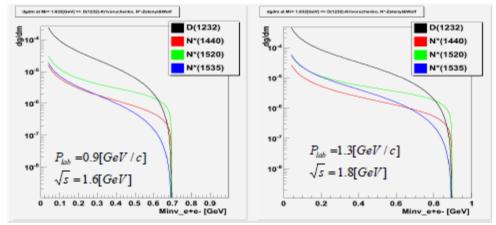

Andrew Wilson

The Production of Baryon Resonances using Real Photons

Baryon Resonance Coupling to the Photon

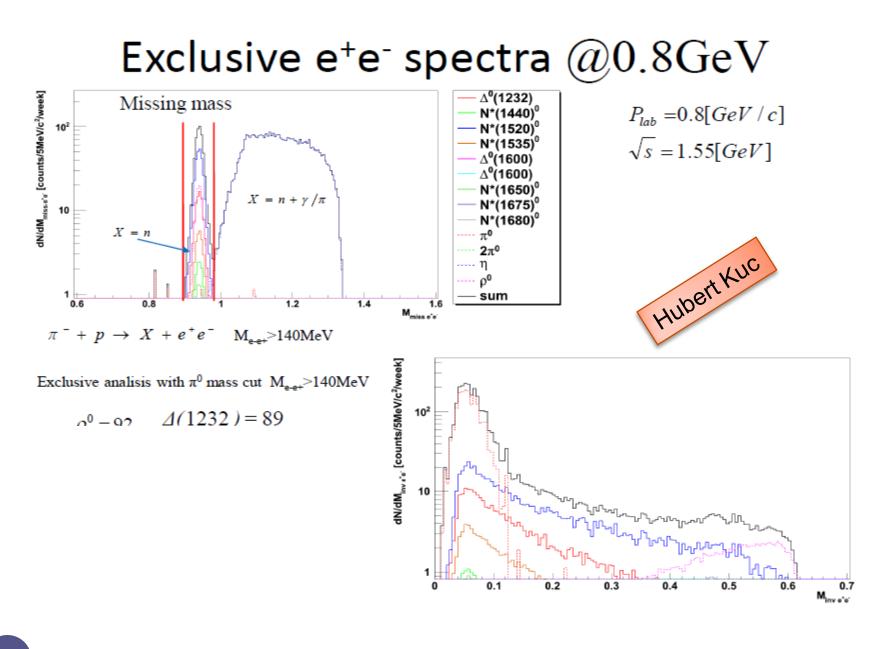
Bonn-Gatchina PWA solution A. V. Anisovich, *et al.*, Eur. Phys. J. A **48** (2012) 15.

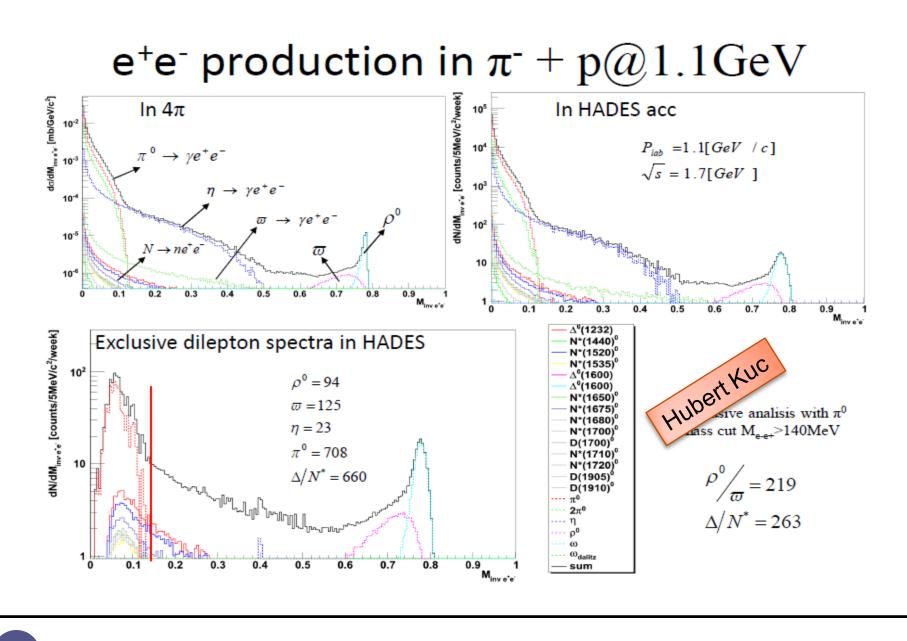
Cross section maximum assuming a Breit-Wigner shape and no interference.

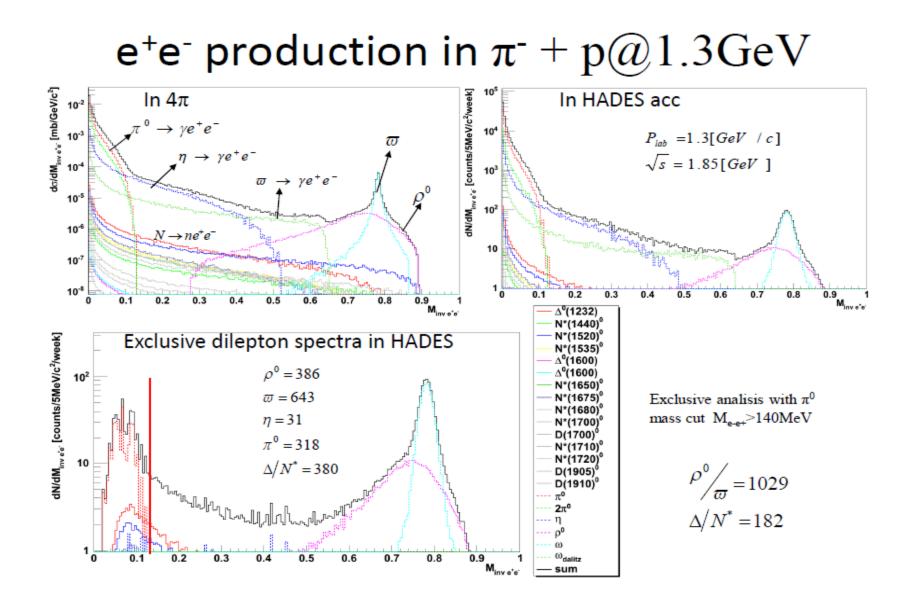

Baryon resonance dalitz decay cross section

 Using Zetenyi & Wolf formula mass dependent decay widths can be calculated,

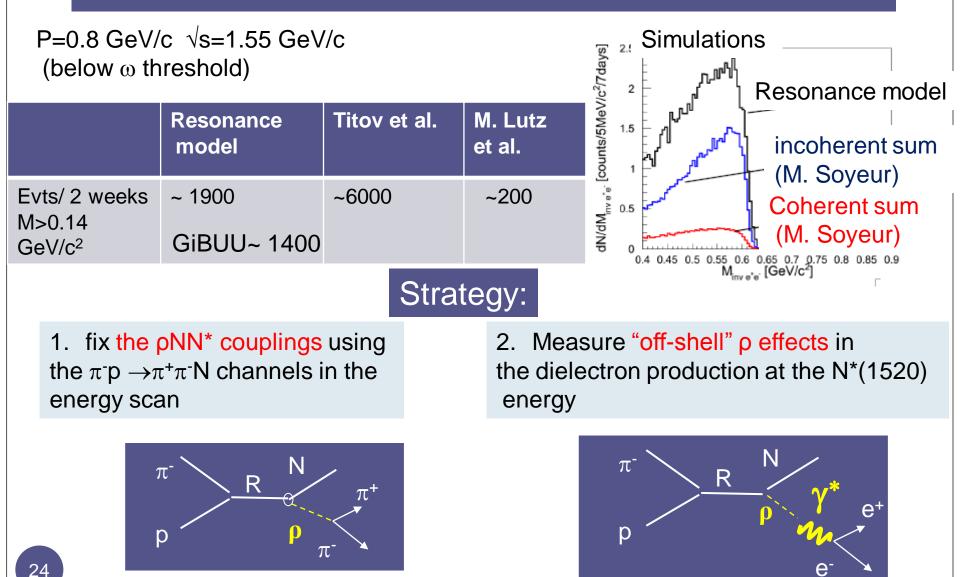

HubertKuc

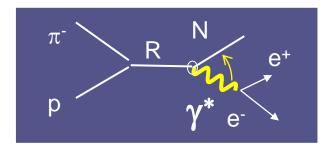

 Γ_{R→ne+e}-(M_R) used to calculate mass dependent dalitz decay cross section for baryon resonances


$$\sigma_{\pi\text{-}p \to R \to cd} = \frac{2J_R + 1}{(2S_{\pi^-} + 1)(2S_p + 1)} \frac{4\pi}{p_i^2} \frac{s\Gamma_{R \to \pi^- p}\Gamma_{R \to cd}}{(s - M_R^2)^2 + s\Gamma_{kol}^2}$$

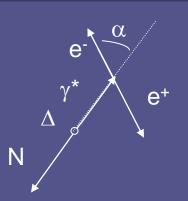


Cross section for resonance Dalitz decay calculated by replacing $\Gamma_{R \rightarrow cd} = \Gamma_{R \rightarrow ne^+e^-}$

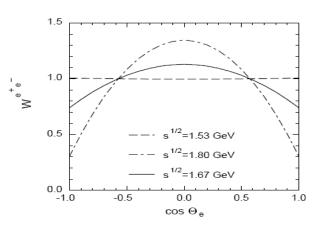


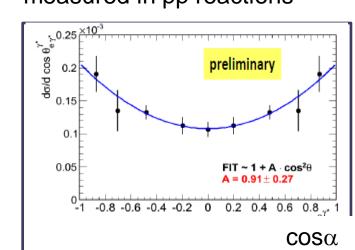


$\pi^{-}p \rightarrow ne^{+}e^{-}$: count rate estimates



Angular distributions in $\pi^-p \rightarrow ne^+e^-$:


γ* angular distributions in CM sensitive to the different resonance .contributions


e⁺/e⁻ angular distributions in γ^{*} reference frame sensitive to helicity amplitudes (electromagnetic form factors)

B. Kaempfer , A Titov , R.Reznik Nucl. Phys. A721(2003)583

e.g distributions in $1 + \cos^2\theta$ in case of purely magnetic transition Δ (1232) measured in pp reactions

Remaining issues-ongoing studies

- Count rates will be low, (predictions are scattered), but it will give in any case the very first direct information on off-shell ρ emissivity.
- Choose energy:
 - P=0.740 GeV/c (√s=1.52 GeV/c²) ?
- Resume Hubert's simulations, include pion momentum reconstruction (Jacek)
- helicity angle distribution for the different resonances (M. Zetenyi ?)
- Improved lagrangian model (including ω) (M. Zetenyi and G. Wolf)
- Form factor models for N-N(1520) time-like transition (T. Pena and G. Ramalho)
- Fit eVDM Form factor model (Krivoruchenko and Faessler) to recent Space-Like data

Reminder: existing simulations for γ detection (EMC)

Experiments with the GSI π^- beam : one possible scenario

- 1 week π^-A 1.6 GeV/c 3 targets C, Cu, Pb strangeness production (K, ϕ) (and a few hundreds of $\rho/\omega \rightarrow e^+e^-$)
- 1 week π ⁻p energy scan π ⁻p $\rightarrow n\pi^{+}\pi^{-}, p\pi^{-}\pi^{0}$ PWA (or maybe 3.5 days if we scan only the lower energy region)
- 2 weeks (or 2.5 weeks) π⁻p → ne⁺e⁻ 0.740 GeV/c
 Electromagnetic transition form factors of baryonic resonance/ off-shell ρ meson production

Conclusion:

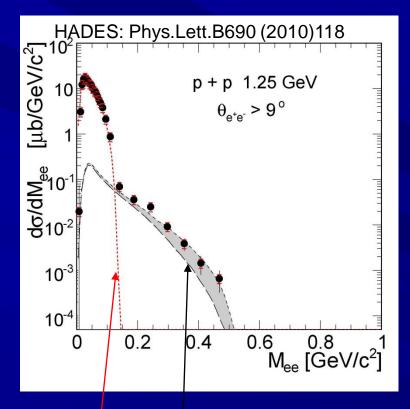
perspectives of pion beam experiments with HADES (2014)

- Strangeness production in π^-A at 1.7 GeV/c
- Energy scan of π -p reactions : one pion, two pion and kaon production

Urgent need of new data for Partial Wave Analysis → baryonic resonance properties

• π -p \rightarrow ne⁺e⁻ at 0.8 GeV/c

Crucial to control the interpretation of medium effects (lesson from HADES dilepton experimental program)

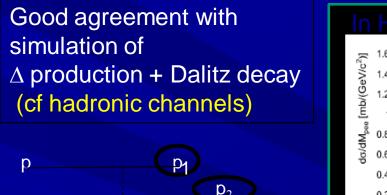

Unique chance to study Time-Like electromagnetic structure of higher lying resonances/coupling to ρ/ω mesons (complementary to pion electroproduction)

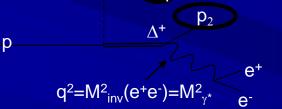
GSI pion beam is unique in world at present to provide these data This should be exploited ,.... before HADES moves to FAIR

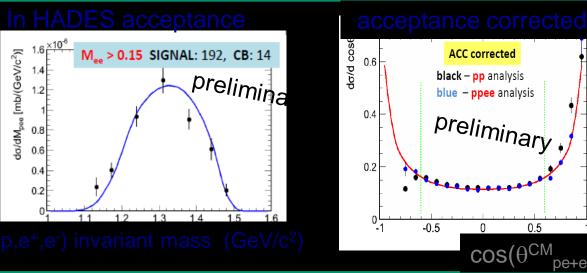
Thank you

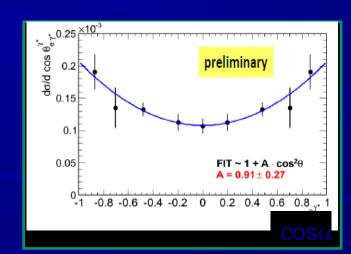
Resonance model results: π° Dalitz Δ Dalitz + effect of lachello FF below η threshold: only 2 dilepton sources

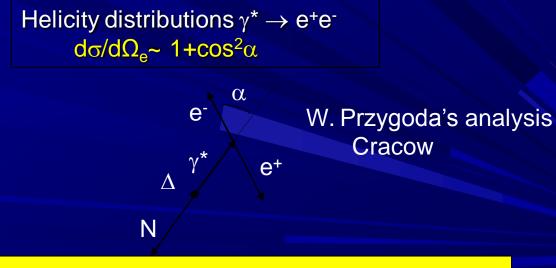
```
□ \pi^{\circ} Dalitz decay \sigma_{\pi^{\circ}} =4.5 mb
branching ratio \pi^{\circ} \rightarrow \gamma e^+e^- 1.2 %
```

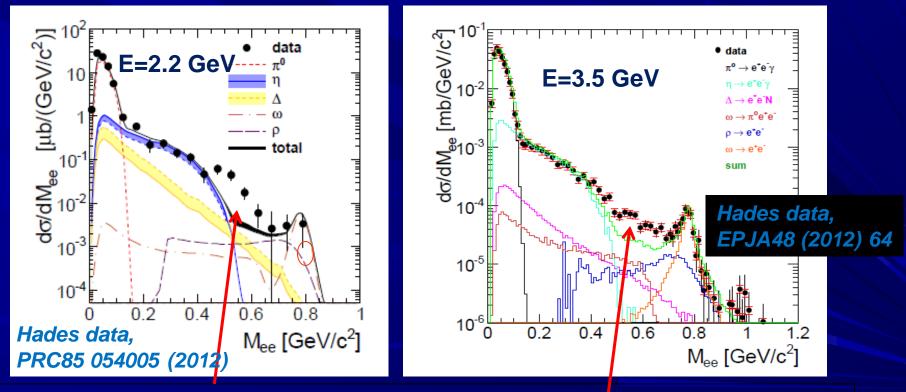

□ \triangle Dalitz decay : branching ratio $\triangle \rightarrow \text{Ne}^+\text{e}^-$ (QED :4.2 10⁻⁵)


non resonant contribution expected to be small

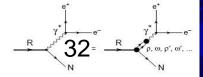

Time-like N- Δ transition electromagnetic form factors


Wan and Iachello Int. J Mod. Phys. A20 (2005) 1846 G. Ramalho and T. Pena *Phys.Rev.* D85 (2012) 113014


Exclusive analysis : pp→ppe⁺e⁻ at 1.25 GeV

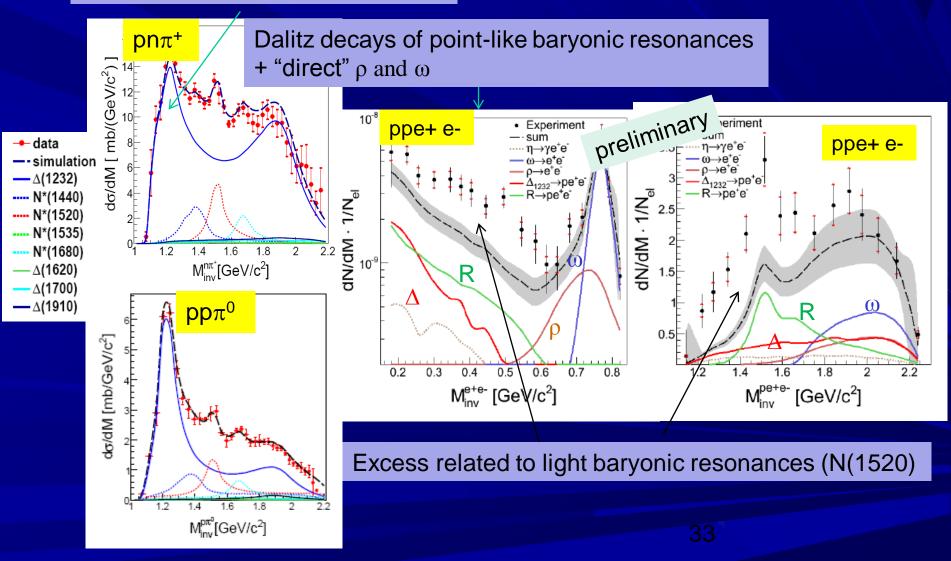


First measurement ! Dalitz decay branching ratio in agreement with QED value (4.2 10 ⁻⁵) BR= 4.42 10⁻⁵ ±20% (syst.) ± 9% (stat)


$pp \rightarrow e^+e^-X E=2.2 GeV, 3.5 GeV$

Comparison to cocktail of dilepton sources

- Direct production of ρ/ω
- Dalitz decay of Δ resonance (point-like)



Effect of electromagnetic form factors / Coupling of ρ to baryonic resonances ?

Exclusive $pp \rightarrow ppe^+e^-$ channel at 3.5 GeV

Cocktail of baryonic resonances constrained by hadronic channels

Branching ratio from M. Zetenyi and Gy. Wolf formula

$$\frac{d\Gamma_{R\to Ne^+e^-}}{dM^2} = \frac{\alpha}{3\pi} \frac{1}{M^2} \Gamma_{R\to N\gamma}(M)$$

The differential width of the Dalitz-decay of a partonic decay width to a virtual photon, $\Gamma_{R \to N\gamma}(M)$

Here the notation $M^2(=q^2)$ is used for the square of the dilepton invariant mass (= mass of the virtual photon). $\Gamma_{R\to N\gamma}(M)$ can be expressed in terms of the photonic decay matrix element $\langle N\gamma|T|R\rangle$ as

$$\Gamma_{R \to N\gamma}(M) = \frac{\sqrt{\lambda(m_*^2, m^2, M^2)}}{16\pi m_*^3} \frac{1}{n_{pol,R}} \sum_{pol} |\langle N\gamma | T | R \rangle|^2$$
$$\frac{1}{n_{pol,R}} \sum_{pol} |\langle N\gamma | T | R \rangle|^2 = 2\mathcal{M}_T + \mathcal{M}_L$$

$$\begin{split} \mathcal{M}_{T}^{1/2+} &= 4\pi \alpha g_{1}^{2} \frac{1}{2m^{4}} \left(m_{*}^{2} - m^{2}\right)^{2} \left[(m_{*} + m)^{2} - M^{2}\right], \\ \mathcal{M}_{L}^{1/2+} &= 4\pi \alpha g_{1}^{2} \frac{M^{2}}{2m^{4}} (m_{*} + m)^{2} \left[(m_{*} + m)^{2} - M^{2}\right], \\ \mathcal{M}_{T}^{1/2-} &= 4\pi \alpha g_{1}^{2} \frac{1}{2m^{4}} \left(m_{*}^{2} - m^{2}\right)^{2} \left[(m_{*} - m)^{2} - M^{2}\right], \\ \mathcal{M}_{L}^{1/2-} &= 4\pi \alpha g_{1}^{2} \frac{M^{2}}{2m^{4}} (m_{*} - m)^{2} \left[(m_{*} - m)^{2} - M^{2}\right], \\ \mathcal{M}_{T}^{3/2+} &= 4\pi \alpha g_{1}^{2} \frac{1}{12m_{*}^{2}m^{2}} \left[(m_{*} - m)^{2} - M^{2}\right] \\ &\times \left(3m_{*}^{4} + 6m_{*}^{3}m + 4m_{*}^{2}m^{2} + 2m_{*}m^{3} + m^{4} - 2m_{*}mM^{2} - 2m^{2}M^{2} + M^{4}\right), \end{split}$$

$$\mathcal{M}_{L}^{3/2+} = 4\pi \alpha g_{1}^{2} \frac{M^{2}}{3m^{2}} \left[(m_{*} - m)^{2} - M^{2} \right],$$

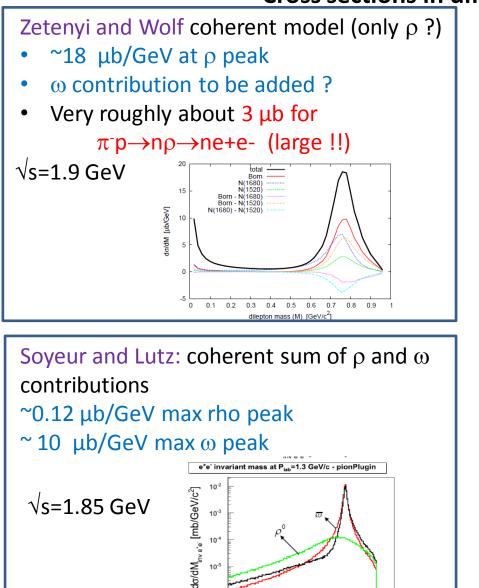
$$\mathcal{M}_{T}^{3/2-} = 4\pi \alpha g_{1}^{2} \frac{1}{12m_{*}^{2}m^{2}} \left[(m_{*} + m)^{2} - M^{2} \right] \times \left(3m_{*}^{4} - 6m_{*}^{3}m + 4m_{*}^{2}m^{2} - 2m_{*}m^{3} + m^{4} + 2m_{*}mM^{2} - 2m^{2}M^{2} + M^{4} \right),$$

$$\mathcal{M}_{L}^{3/2-} = 4\pi \alpha g_{1}^{2} \frac{M^{2}}{3m^{2}} \left[(m_{*} + m)^{2} - M^{2} \right],$$

- -0

$$\begin{split} \mathcal{M}_{T}^{5/2+} &= 4\pi \alpha g_{1}^{2} \frac{1}{480m_{*}^{4}m^{4}} \left[(m_{*}-m)^{2} - M^{2} \right] \left[(m_{*}+m)^{2} - M^{2} \right]^{2} \\ &\times \left(2m_{*}^{4} - 4m_{*}^{3}m + 3m_{*}^{2}m^{2} - 2m_{*}m^{3} + m^{4} \right. \\ &+ 2m_{*}mM^{2} - 2m^{2}M^{2} + M^{4} \right), \end{split} \\ \mathcal{M}_{L}^{5/2+} &= 4\pi \alpha g_{1}^{2} \frac{M^{2}}{120m_{*}^{2}m^{4}} \left[(m_{*}-m)^{2} - M^{2} \right] \left[(m_{*}+m)^{2} - M^{2} \right]^{2} \\ \mathcal{M}_{T}^{5/2-} &= 4\pi \alpha g_{1}^{2} \frac{1}{480m_{*}^{4}m^{4}} \left[(m_{*}-m)^{2} - M^{2} \right]^{2} \left[(m_{*}+m)^{2} - M^{2} \right] \\ &\times \left(2m_{*}^{4} + 4m_{*}^{3}m + 3m_{*}^{2}m^{2} + 2m_{*}m^{3} + m^{4} \right. \\ &- 2m_{*}mM^{2} - 2m^{2}M^{2} + M^{4} \right), \end{split} \\ \mathcal{M}_{L}^{5/2-} &= 4\pi \alpha g_{1}^{2} \frac{M^{2}}{120m_{*}^{2}m^{4}} \left[(m_{*}-m)^{2} - M^{2} \right]^{2} \left[(m_{*}+m)^{2} - M^{2} \right] \end{split}$$

Baryon Resonance Coupling to the Photon


Resonance	Partial Width [MeV]	Total Width [MeV]
N(1440)1/2 ⁺ * * * *	0.29929+-0.078503	365+-35
N(1520)3/2 ⁻ * * * *	0.9959+-0.059978	114+-5
N(1535)1/2 ⁻ * * * *	1.2535+-0.23877	128+-14
N(1650)1/2 ⁻ * **	0.19052+-0.080828	104+-10
N(1675)5/2 ⁻ * * * *	0.072775+-0.0126	152+-7
N(1680)5/2 ⁺ * * * *	1.1808+-0.05224	118+-6
N(1710)1/2 ⁺ * **	0.56018+-0.32318	200+-18
N(1720)3/2 ⁺ * * * *	3.3891+-1.6398	420+-100
N(1875)3/2 ⁻ * **	0.06435+-0.063951	200+-25
N(2060)5/2 ⁻ * **	1.1664+-0.40369	375+-25
N(2190)7/2 ⁻ * **	0.79473+-0.17224	335+-40
$\Delta(1232)3/2^+ * * * *$	1.1111+-0.031101	110+-3
$\Delta(1600)3/2^+ * **$	0.2256+-0.063419	220+-45
$\Delta(1620)1/2^{-} * **$	0.40437+-0.077764	130+-11
$\Delta(1700)3/2^{-} * **$	5.7183+-0.98023	310+-40
$\Delta(1905)5/2^+ * * * *$	0.30669+-0.055753	335+-18
$\Delta(1950)7/2^+ * **$	1.1933+-0.081041	256+-10

Andrew Wilson

The Production of Baryon Resonances using Real Photons

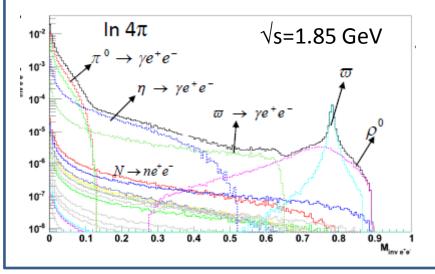
e^+e^- production in $\pi^- + p(a)1.3 \text{GeV}$

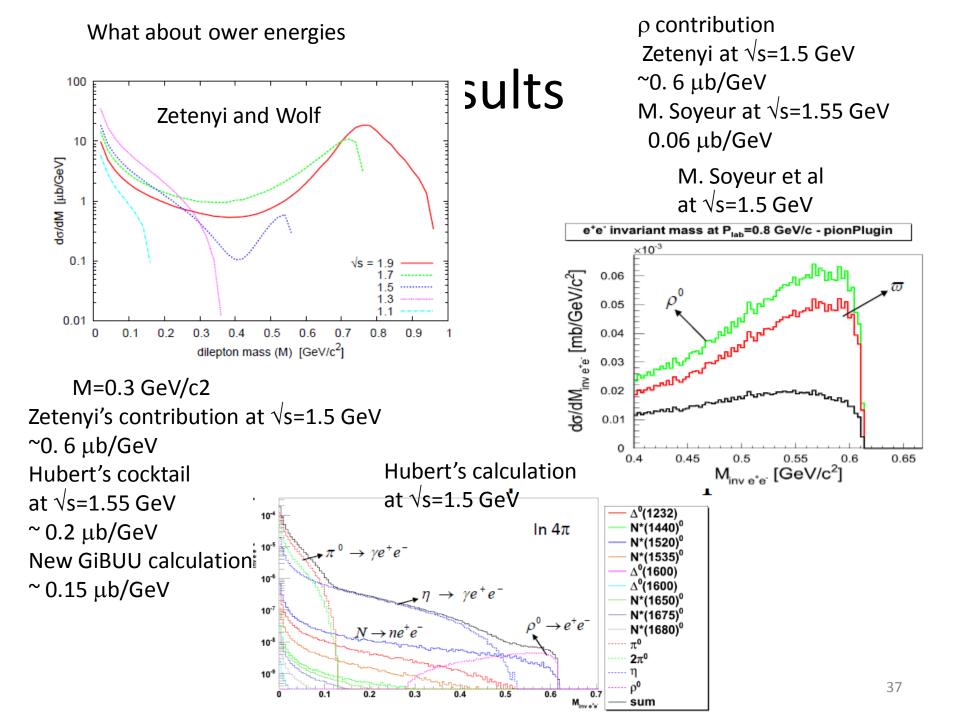
Cross sections in different models

10-4

10.6 04

0.8


0.6


07

M_{inve^{*}e} [GeV/c²]

0.9

Hubert's simulations are based on Incoherent sum of cross sections from data tables, $\pi^{-}p \rightarrow n\rho$ is about 2.6 mb $\pi^{-}p \rightarrow n\omega$ is about 2.5 mb $\pi^{-}p \rightarrow n\rho \rightarrow ne^{+}e^{-}0.120 \ \mu b$ $\pi^{-}p \rightarrow n\omega \rightarrow ne^{+}e^{-}$ 0.180 µb $\sim 0.6 \,\mu b/GeV \max \rho peak$ ~ 16 μ b/GeV max ω peak

