Experimental study of the π -p \rightarrow ne+e-

TECHNISCHE UNIVERSITÄT DARMSTADT

Federico Scozzi TU Darmstadt/IPN Orsay

Hades strategy

- Study dilepton emission in dense and hot matter (cf. DLS/Berkeley)
 - A+A reactions in the 1-2 AGeV energy range C+C, Ar+KCI, Au+Au (2012)
- Cold matter at normal nuclear density p+Nb 3.5 GeV
 - (cf KEK, Jlab, CBELSA/TAPS)
- Elementary collisions pp, dp and π -p (2014)

reference to heavy-ion spectra

study different dilepton sources (exclusive channels)

dilepton emission is probing time-like electromagnetic structure of hadronic transitions!

- Simultaneous measurements of hadronic channels (pp \rightarrow NN π , pp \rightarrow NN $\pi\pi$) Cross-checks on known channels, detailed information on baryonic resonance production
- Strangeness measurement program: K-, K⁰, φ, Σ(1385), Λ(1405) to be investigated also in π-p and π-A
- HADES@FAIR (2017): pp, pA, AA E/A<8 AGeV

In medium modifications Experimental results

TECHNISCHE UNIVERSITÄT DARMSTADT

•Strong broadening of in-medium ρ spectral function due to its coupling with baryonic resonances

(N(1520), ∆(1620), N(1720), etc.)

•The coupling of ρ to baryonic resonances can be studied directly in π --N interactions

Electromagnetic form factors

ORSAY

Time-like electromagnetic form factors

Space-like electromagnetic form factors

No data are available

Data from Jlab (CLAS) up to $-q^2 = 4 \text{ GeV}^2$

HADES detector

- Located at SIS18, GSI
- Beams: heavy-ions, protons, pions
- Fixed-target experiment
- Hadron and lepton identification
- Acceptance: 85% azimuthal coverage, 18-85° in polar angle
- Mass resolution 2 % (in ρ/ω region)
- 80.000 channels
- Fast DAQ: 50kHz event rate

Pion beams with HADES

TECHNISCHE UNIVERSITÄT DARMSTADT

ORSAY

Secondary π momentum p_{π} = 0.69 GeV/c

- Access to the "second resonance region"
- Beam intensity I = 3-4 × $10^5 \pi/s$
- σ_p = 2 %
- Target: Polyethylene (CH₂)_n and Carbon

HADES programme for pion beam

Scan of N(1520) resonance region :

• $\pi^+\pi^-$ production

Improve very poor $\pi^+\pi^-$ database. Manley analysis is based on only 240000 events (no differential distributions)

e+e- production

No data are available

Resonance Dalitz decays R→Ne⁺e⁻

(Link to time-like transition electromagnetic structure)

Elastic scattering

W. Przygoda, MESON 2016, EPJ Web of Conferences Vol. 130 (2016) yield dσ/dθ [mb/3° 10⁶ RATIO SAID / EXP 1.5 10⁵ 40 50 70 80 60 90 100 110 10⁴ $\theta_{CM}(\pi)$ 10³ 0.5 10² ۱0⁶ -0.05 0.05 50 70 60 80 90 100 110 40 0 $M_{miss}^2 (\pi p) [MeV^2/c^4]$ $\theta_{CM}(\pi)$ • $\pi^{-} p \rightarrow \pi^{-} p$ (after C subtraction) Normalization via measured π^{-} p elastic scattering of known σ (SAID partial wave solution)

PWA results (one example)

Bonn-Gatchina partial wave analysis (PWA) including • HADES data (4 energies $\pi^{+}\pi^{-}$ and $\pi^{-}\pi^{0}$)

• π and γ database

PWA $\pi^+\pi^-$ inv. mass ρ contribution $\pi^-p \rightarrow \pi^+\pi^-n$ at 0.69 GeV/c

TECHNISCHE

DARMSTADT

Inclusive invariant mass spectrum (raw)

- Signal = N_{e+e-} CB
- Same-event like-sign CB geometric and/or arithmetic mean
- CB rejection cuts:
 - Opening angle > 9°
 - Tracks with a not fitted track in the vicinity of 4° are excluded from further analysis
- Signal (M<140 MeV/c²) = **37450**
- Signal (M>140 MeV/c²) = **3350**
 - → Efficiency corrections based on Monte Carlo simulations

Searching for π^0 and η with full conversion method

 π^{0}

Large uncertainties on experiment and theory side

TECHNISCHE

DARMSTADT

Inclusive invariant mass spectrum Comparison with simulation

Sources:

- σ(π⁻p−>π⁰X)
 - $\pi^0 \rightarrow e^+e^-\gamma$
- π p → N(1520)
 Dalitz decay with a constant form factor
- $\sigma(\pi^- p \rightarrow \eta X)$ $\eta \rightarrow e^+ e^- \gamma$
- π⁻+C treated as a quasi-free process
- Cross sections taken from database (Landolt-Bornstein)

- Simulations filtered through the HADES acceptance
- Cocktail without ρ contribution does not describe measured data!

Good description using a cocktail of point-like baryons+ ρ contribution

$$\frac{d\sigma}{dM_{ee}} = \frac{d\sigma}{dM_{\pi\pi}} c_p \left(\frac{m_p}{m_{ee}}\right)^3 C_p = 4.7 \times 10^{-5}$$

Deviation from point-like behaviour

- Ratio between:
 - Efficiency corrected exclusive e+e- spectra
 - N(1520) QED calculation, filtered through the HADES acceptance
- Clear deviation from unity in the high mass region!
- Indication for VDM like form factors

Comparison with GiBUU model

- BUU-type hadronic transport model
- Incoherent sum of the cocktail components
- $\sigma_{p}(\pi^{0}) = 19 \text{ mb}$
- $\sigma_{p}(\eta) = 0.9 \text{ mb}$
- $\sigma_{p}(\Delta) = 4.24 \text{ mb}$
- Some overestimation in π⁰
 region and above 140 MeV/c²
 dominated by N(1520) and η

Comparison with GiBUU model

Exclusive spectrum $\pi p \rightarrow ne^+e^-$ **GiBUU** total 10 do/dM_{ee} [µb/GeV/c²] $-\pi^{0}$ HADES $-\eta$ dalitz **Preliminary** $-\Delta$ dalitz η -brem -N(1535) -N(1520) -data 0^{-1} 10⁻² 0.2 0.3 0.5 0.6 0.1 0.4 M_{ee} [GeV/c²]

- N(1520)→Nρ→Ne+e- with p→e+efollowing pure VDM form factor for N(1520)
- → Overestimation points to problem with strict VDM at small invariant mass (close to real photon emission)

e⁺e⁻ production in microscopic models

ORSAY

Exploiting angular distribution

- Invariant mass shows deviation from point-like baryon transitions
- Additional information on the electromagnetic transitions can be provided by the angular distribution
- General formula for $\gamma^* \rightarrow e^+e^-$ angular distribution:

 $|A|^{2} = 8|\mathbf{k}|^{2} \left[1 - \rho_{11}^{(H)} + \cos^{2}\theta(3\rho_{11}^{(H)} - 1) + \sqrt{2}\sin(2\theta)\cos\phi\,\mathbf{Re}\rho_{10}^{(H)} + \sin^{2}\theta\cos(2\phi)\,\mathbf{Re}\rho_{1-1}^{(H)}\right]$

- Coefficients depend on $M_{\rm e^{+e^{-}}}$ and γ^{*} angle
- The estimation of the coefficients is performed via a log-likelihood event-by-event approach

Fit results in HADES acceptance

TECHNISCHE

UNIVERSITÄT DARMSTADT

channels and VDM electromagnetic form factors (E.Speranza, M. Zetenyi, B. Friman, Physics Letters B 764 (2017) 282–288)

0.6

0.5

do/dM d(cos8₁,*) [Jub/GeV] 70 0.0 70 0.0 70 0.0

0.1

0

0

Model predictions

N(1520)

N(1520)

 $\pi/4$

N(1520

+ N(1440

– N(1440

π/2

Microscopic model including N(1440) and N(1520) excitations in s and u-

 $\frac{d\sigma}{dMd\cos\theta_{\gamma^*}d\cos_e} \propto \Sigma_{\perp}(1+\cos^2\theta_e) + \Sigma_{\parallel}(1-\cos^2\theta_e)$

 $3\pi/4$

 $\propto A(1 + B(\theta_{\gamma^*}, M) \cos^2 \theta_e)$

Distribution of helicity angle: for each contribution, it reflects the electromagnetic structure of the transition

 $\lambda_{\theta} = \frac{3\rho_{11} - 1}{1 - \rho_{11}}$

Model predictions

Comparison with data

• Comparison of density matrix coefficients extracted from the data and in the microscopic model in the same M_{ee} and $\theta_{\gamma*}$ ranges

1:-1<Cos θ_{cm} <0 2:0<Cos θ_{cm} <0.5 3:0.5<Cos θ_{cm} <1

Model predictions Comparison with data

ORSAY

- Model independent statements: transverse photons give ρ_{11} =1/2, ρ_{10} =0
- Data indicate significant contribution of longitudinal virtual photons, especially for cos θ_{cm} in [-1,0] and [0.5,1].
- •Consistent with pure contribution of N(1520)
- Points to a too large N(1440) contribution (also supported by PWA of π-p→nπ⁺πchannel)
- Effects of non-resonant terms to be studied

Summary and outlook

- HADES Di-Electron spectrometer in combination with pion beam is an unique tool to understand in details baryon-ρ couplings using both e⁺e⁻ and π⁺π⁻ measurements
- Measurement of e⁺e⁻ invariant mass spectra for inclusive and exclusive channels
- Good agreement with a cocktail of point-like source + ρ contribution deduced from PWA of $\pi^+\pi^-$ data
- Comparison to GiBUU points to too large N(1520) contributions (due to VDM model?)
- Despite low statistics, angular distributions show sensitivity to time-like electromagnetic structure of the transitions and allows for a comparison to models
- Future plan to continue pion induced reactions at higher energies with an electromagnetic calorimeter and new RICH detector

