# Update on one pion and two-pion production in $\pi N$ reactions

## GSI, November 2012, Hades collaboration meeting

B. Ramstein, IPN Orsay





### Outline

- Why are πN→πN and πN→ππN measurements related to the problem of mesons in-medium modification ?
- Why are new data needed?
- Can HADES provide these measurements? acceptances, sensitive observables, count rates,...

#### In-medium vector meson modifications:

see e.g. Leupold ,Metag,Mosel Int. J. of Mod. Phys. E19 (2010) 147 for a recent review



### The $\rho$ meson in hot and dense hadronic matter from SIS18 to SPS



#### Acc.-corrected µ<sup>+</sup>µ<sup>-</sup> excess spectrum



In the context of dielectron measurements constraints on the coupling of ρ/ω mesons to baryonic resonances are important for
 ✓ The description of NN collisions
 ✓ The interpretation of medium effects

## Why are new $\pi N \rightarrow \pi N$ and $\pi N \rightarrow \pi \pi N$ data needed?

From discussions at many meetings with A. Sarantsev, V. Shklyar, I. Strakowski,.....

### Partial Wave Analysis

The scattering amplitude can be decomposed into different <sup>2S+1</sup>L<sub>J</sub> partial waves in entrance or exit channels



#### **On-going collaborations with different groups of PWA**

- Giessen (V. Shklyar et al.)
- GWU (I. Strakowsky)

• BONN-Gatchina (A. Sarantsev et al.)  $\rightarrow$  code was provided to us and tested on pp data (W.Przygoda's talk for pp $\rightarrow$ pp $\pi$  and Eliane's for pp $\rightarrow$ p $\Lambda K$ )

### Present situation : elastic channels

• Knowledge on baryonic resonances  $M_R$ ,  $\Gamma(R \rightarrow \pi N)$  mainly based on Partial Wave Analysis of  $\pi N \rightarrow \pi N$  and  $\gamma N \rightarrow \pi N$ 

#### Mainly three main analysis of the $\pi N$ scattering data so far:

- Carnegi-Mellon (Cutkosky)
- KHU (Höler)
- SAID/GWU(now absolute) (Arndt, Workman, Strakovsky, Briscoe)



Dynamical models are now available (Giessen, GWU)

Problems for BR (N\* $\rightarrow$ N $\pi$ ) < 20% (different analyses become incompatible)

ways to improve the situation....  $\checkmark$  more precise data for  $\pi N \rightarrow \pi N$  (and elastic channels...)  $\checkmark$  updated analysis of elastic AND inelastic channels

### $\pi N \rightarrow \pi \pi N$ : present status



### $\pi N \rightarrow N\pi \pi$ : Existing data





More recent data (TRIUMF,LAMPF,BNL)
 do not cover the region between 1.32 and
 1.9 GeV
 bigh statistics differential distributions

 $\rightarrow$  high statistics differential distributions are needed

### $P_{11}(1710)$ : problems

$$N(1710) P_{11}$$

$$(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: \*\*\*

Most of the results published before 1975 were last included in our 1982 edition, Physics Letters **111B** 1 (1982). Some further obsolete results published before 1984 were last included in our 2006 edition, Journal of Physics, G **33** 1 (2006).

The latest GWU analysis (ARNDT 06) finds no evidence for this resonance.

#### N(1710) BREIT-WIGNER MASS

| VALUE (MeV)                 | DOCUMENT ID |    | TECN        | COMMENT                                |  |
|-----------------------------|-------------|----|-------------|----------------------------------------|--|
| 1680 to 1740 (≈ 1710) OUR E | STIMATE     |    |             |                                        |  |
| 1717±28                     | MANLEY      | 92 | <b>IPWA</b> | $\pi N \rightarrow \pi N \& N \pi \pi$ |  |
| $1700 \pm 50$               | CUTKOSKY    | 80 | <b>IPWA</b> | $\pi N \rightarrow \pi N$              |  |
| 1723± 9                     | HOEHLER     | 79 | <b>IPWA</b> | $\pi N \rightarrow \pi N$              |  |

PDG 2010: Br $(\pi N) \approx 10$  to 20 % Br $(2\pi N) \approx 40$  to 90 % Br $(K\Lambda) \approx 5$  to 25 %



italy Shkivar

Modern GWU (SAID) PWA: no signal around 1710 MeV ! Giessen Model:  $P_{11}(1710)$ : Br $(\pi N) \approx 3\%$ 

#### Summary: motivations for $\pi N \rightarrow \pi N$ and $\pi N \rightarrow \pi NN$ measurements

Need for a high statistics energy scan in the region W > 1.3 GeV to provide  $\pi N$  and  $\pi NN$  differential cross sections

✓ Complete existing very precise photoproduction data ✓ Improve knowledge of baryonic resonances,  $M_R$ ,  $\Gamma(N^* \rightarrow N\pi)$ ,  $\Gamma(N^* \rightarrow N\pi\pi)$ ✓ Important for baryonic structure issues (Constituent Quark Models, Lattice QCD)

#### **Regions of interest/open issues:**

- N(1440) P<sub>11</sub> Branching ratios to  $\pi\Delta$  and  $(\pi \pi)_s$  N
- N(1520)  $D_{13}$  Branching ratios to  $\pi\Delta$  and  $\rho$ N, important for  $\rho$  in-medium calculations
- N(1710) P<sub>11</sub> Not seen in the latest PWA analysis BR( $2\pi$ ) =40 to 90 % (PDG 2010)

B. Ramstein, GSI, HADES CM, 22/11/2012

13



### Can HADES provide these data ?





### Inputs for feasibility studies:



measured in 2005:

- 2.7 10<sup>-5</sup>  $\pi$ <sup>-</sup>/ion at 1.17 GeV/c in front of the RICH
- max: 6.5 10<sup>10</sup> N<sub>2</sub> ions=0.5 xSCL
- 4s extraction time
- $\rightarrow$  4.5 10<sup>5</sup>  $\pi$ <sup>-</sup>/s in spill
- $\rightarrow$  2.3 10<sup>5</sup>  $\pi$ -/s in average

#### • Expected in 2012 :

- 25% target cuts, see Thierry's simulations  $\rightarrow$ 2. 10<sup>-5</sup>  $\pi$ -/ion at 1.17 GeV/c on target
- 8 10<sup>10</sup> N<sub>2</sub> ions (measured by FOPI, 0.6 xSCL)
- Extraction time 1s ,total spill length 3s
- $\rightarrow$  1.6 10<sup>6</sup>  $\pi$ <sup>-</sup>/s in spill 5.3 10<sup>5</sup>  $\pi$ <sup>-</sup>/s in average
- Room for improvement ? beam line acceptance  $25\% \rightarrow$ ?, SCL  $60 \rightarrow 100\%$  ?

```
Estimates for the 5 cm long LH2 target at 1.1 GeV/c, 80% data taking efficiency, 50% dead time
```

in  $4\pi$ , 100 % efficiency

N/ hour ~ 150 000  $\sigma$  (mb) N/week ~ 25 x  $\sigma$  (nb)

### Cross sections and counting rates

 $\pi^{-}p/\pi^{+}p \rightarrow N\pi \pi$ 

p=0.7 - 2 GeV/c W=1.48 - 2.15 GeV

 $\begin{array}{ll} \pi^{-}p \rightarrow p\pi^{-}\pi^{0} & \sigma = 4 - 6.3 \text{ mb} \\ \pi^{-}p \rightarrow n\pi^{+}\pi^{-} & \sigma = 6 - 11 \text{ mb} \end{array}$ 

 $\begin{array}{ll} \pi^+ p {\rightarrow} \ p \pi^+ \ \pi^0 & \sigma = 2 \ \text{--} \ 11.4 \ \text{mb} \\ \pi^+ p {\rightarrow} \ \text{n} \pi^+ \ \pi^+ & \sigma = 0.4 \ \text{---} \ 3.3 \ \text{mb} \end{array}$ 



W<sub>cm</sub> (MeV)

WI08 766276 57415/31339 P+=27207/13354 P-=22681/11978 CX=

1300

.nπ\*1

2000

#### SAID database

### $\pi N \rightarrow N\pi \pi$ :acceptances



### $\pi^{-}p/\pi^{+}p \rightarrow N\pi\pi$ :sensitivity

#### Hubert Kuc simulations

#### P=0.8 GeV/c s<sup>1/2</sup>=1.56 GeV



 $\checkmark~M_{_{\!\!\pi\pi}}$  invariant mass in acceptance is sensitive to different N\* decay channels  $\checkmark~Good$  sensitivity also for  $~M_{_{\!\!\pi+N}}$  ,  $~M_{_{\!\!\pi+N}}$ 

### $pp \rightarrow pp\pi^+\pi^- 1.25 \text{ GeV}$ sensivity of two-pion observables



### $\pi^{-}p \rightarrow N\pi \pi$ :statistics for one point

p=0.7 - 2 GeV/c W=1.48 - 2.15 GeV Average statistics in acceptance for one value of W

|                        | $\pi^{-}p \rightarrow p\pi^{-}\pi^{0}$ | $\pi^{-}p \rightarrow n\pi^{+}\pi^{-}$ |  |
|------------------------|----------------------------------------|----------------------------------------|--|
| σ (mb)                 | 4.8                                    | 8                                      |  |
| evts /hour             | 95 000                                 | 130 000                                |  |
| Evts/bin/shift         | 95                                     | 130                                    |  |
| Time for PWA condition | 0.8 shift                              |                                        |  |

#### **Requirements for Partial Wave Analysis**

20 bins in  $cos(\theta_{\pi\pi})$ , 20 bins in  $M_{\pi+N}$ , 20 bins  $M_{\pi-N}$  80 counts /bin (to be discussed)

### $\pi^{-}p \rightarrow N\pi\pi$ statistics for energy scan

 $n\pi^+$ 

2000



### $\pi^{-}p \rightarrow \pi^{-}p$ statistics

P=0.8 GeV/c



|                   | P=0.8 GeV/c | P=2 GeV/c |
|-------------------|-------------|-----------|
| acc $\pi^-$ and p | 54%         | 55 %      |
| acc π⁻ or p       | 66%         | 66%       |

~ 6-15 Mevents/point (0.8 shift)



HADES can provide, within one week, the missing  $\pi^-p \rightarrow \pi^-p$ ,  $\pi^-p \rightarrow \pi^0\pi^-p$  and  $\pi^-p \rightarrow \pi^-\pi^+n$  measurements

A new combined PWA analysis of all pion and photoproduction channels will be possible.

### $\pi^{-}p \rightarrow ne^{+}e^{-}$ : an update

P=0.8 GeV/c (below  $\omega$  threshold)

|               | Resonance<br>model | M. Soyeur<br>et al. |
|---------------|--------------------|---------------------|
| Evts/<br>week | 970                | ~100                |

P=1.3 GeV/c (above  $\omega$  threshold)

|               | Resonance<br>model | M. Soyeur<br>et al. |
|---------------|--------------------|---------------------|
| E∨ts/<br>week | 2300               | ~1100               |

New calculations by Zetenyi and Wolf arXiv:1208.56,

- $\checkmark$  only  $\rho$
- ✓ too large cross sections

B. Ramstein, GSI, HADES CM, 22/11/2012



M.F.M. Lutz , B. Friman, M. Soyeur Nuclear Physics A 713 (2003) 97–118



### Counting rates strangeness production

• Full GEANT simulations for  $p_{\pi}$ =1.7 GeV/c ( above  $\phi$  threshold)

| Numbers of | of events | per day |    |
|------------|-----------|---------|----|
| С          | Cu        |         | Pb |

|                | C                   | Cu                  | PD                  |
|----------------|---------------------|---------------------|---------------------|
| K <sup>0</sup> | 4.7 10 <sup>5</sup> | 3.0 10 <sup>5</sup> | 3.7 10 <sup>5</sup> |
| K+             | 1.4 10 <sup>6</sup> | 1.2 10 <sup>6</sup> | 1.1 10 <sup>6</sup> |
| K-             | 10 <sup>5</sup>     | 6.3 10 <sup>4</sup> | 5.9 10 <sup>4</sup> |
| φ (K⁺K⁻)       | 1260                | 3780                | 3400                |

 $\pi^{-} + p \rightarrow \Sigma^{-} + K^{+} \text{ (detection of all charged particles + missing neutron analysis)}$  $\pi^{-} + p \rightarrow \Lambda + K^{0} \text{s (detection of all charged particles)}$ 

 $\pi^{-}$  + p  $\rightarrow \Sigma^{0}$  + K<sup>0</sup> (detection of all charged particles but the photon)

| Numbers of events per 0.8 shift |                                        | r 0.8 shift                     | threshold for the produc       |
|---------------------------------|----------------------------------------|---------------------------------|--------------------------------|
| Σ <sup>-</sup> + K <sup>+</sup> | Λ <b>+ K</b> <sup>0</sup> <sub>s</sub> | Σ <sup>0</sup> + K <sup>0</sup> | Σ <sup>-</sup> K⁺≈ 1.035 GeV/c |
| 5150                            | 280                                    | 480                             | ΛK <sup>0</sup> ≈0.896 GeV/c   |
|                                 |                                        |                                 | Σ°κ°≈1.031 GeV/C               |

#### Experiments with the GSI $\pi^-$ beam : one possible scenario

- 1 week  $\pi$ -A 1.6 GeV/c 3 targets C, Cu, Pb strangeness production (K, $\phi$ ) (and a few hundreds of  $\rho/\omega \rightarrow e^+e^-$ )
- 1 week  $\pi$ -p energy scan  $\pi$ -p  $\rightarrow n\pi^+\pi^-$ ,  $p\pi^-\pi^0$ PWA.
- 2 weeks π<sup>-</sup>p → ne<sup>+</sup>e<sup>-</sup> 0.8 GeV/c
   Electromagnetic transition form factors of baryonic resonance/ off-shell ρ meson production

### Conclusion

Measurements of differential distributions in  $\pi^-p \rightarrow n \pi^+\pi^-$  in an energy scan from 0.8 to 1.3 GeV/c (W=1.48 - 2.15 GeV)

 $\rightarrow$  necessary complement to photoproduction data in order to improve the knowledge on baryonic resonances properties

 $\rightarrow$  outstanding contribution for hadronic structure studies (Lattice QCD, quark models)

 $\rightarrow$  These data are necessary for the interpretation of medium effects in dielectron production at SIS energies AND above

GSI pion beam is unique in world at present to provide the missing data

A scenario is proposed to measure

- ✓ strangeness production in  $\pi$ -A p=1.6 GeV/c
- $\checkmark$  two-pion and kaon production in an energy scan in  $\pi$ -p
- ✓ off-shell  $\rho\omega$  production  $\pi$ <sup>-</sup>p→ne<sup>+</sup>e<sup>-</sup> p=0.8 GeV/c

### $N(1520) D_{13}$ state

#### Manley et al: PRD(1984)

 $M_R = 1.52 \text{MeV}$  $\Gamma_{
m tot} = 120 \text{MeV}$ 

strong N(1520)  $\rightarrow 2\pi N$ Br( $\rho N$ )  $\approx 20\%$ 





- Giessen : overlapping of spectral functions of N\*(1520) and ρ-meson: non-symmetric
- Giessen: no effect below 1.4 GeV
- Manley: no ρ-spectral function: should be updated

#### Vitaly Shklyar

### Exclusive channel $\pi^{-}p \rightarrow ne^{+}e^{-}$

Early motivations: Coupling to  $\rho/\omega$  channels New approach based on transition electromagnetic form factors New calculations: Zetenyi and Wolf

29



### Simulations for $\pi^{-}p \rightarrow e^{+}e^{-}X$



### Dilepton spectroscopy in $\pi^{-}A/\pi^{-}p$

Early motivations reinforced by HADES results in pA/pp

### Dilepton spectroscopy in π<sup>-</sup>A Medium effets on vector mesons:

- Modifications of the vector mesons (ρ,ω,φ) properties in nuclear medium are predicted
- Connection with chiral symetry restoration?
- These effects are looked for by HADES using
  - Heavy-lon reactions (hot and dense matter)
  - p+A reactions (cold nuclear matter)
- Interest of π<sup>-</sup>A :
  - cold nuclear matter
  - mesons are produced with low momentum: probability to decay in the medium is higher



### Dilepton spectroscopy in $\pi^-A$



Large medium effects are expected in  $\pi A$  reactions

### $\pi^{-}p/\pi^{+}p \rightarrow N\pi\pi$ :statistics for one point

p=0.7 - 2 GeV/c W=1.48 - 2.15 GeV Average statistics in acceptance for one value of W

|                            | $\pi^{-}p \rightarrow p\pi^{-}\pi^{0}$ | π <sup>-</sup> p→nπ+ π <sup>-</sup> | $\pi^+p \rightarrow p\pi^+\pi^0$ | $\pi^+p \rightarrow n\pi^+\pi^+$ |
|----------------------------|----------------------------------------|-------------------------------------|----------------------------------|----------------------------------|
| σ (mb)                     | 4.8                                    | 8                                   | 9.                               | 1.5                              |
| evts /hour                 | 95 000                                 | 130 000                             | 178 000                          | 24000                            |
| Evts/bin/shift             | 95                                     | 130                                 | 177                              | 24                               |
| Time for PWA condition     | 1 shift                                |                                     | 4 shifts                         |                                  |
| Time for<br>26 points in W | 27 shifts ( $\sim$ 9 days)             |                                     | 108. Shifts (~ 36 days)          |                                  |

**Requirements for Partial Wave Analysis (from JPARC proposal)** 20 bins in  $cos(\theta_{\pi\pi})$ , 20 bins in  $M_{\pi+N}$ , 20 bins  $M_{\pi-N}$ 100 counts /bin (to be discussed)