Studies for experiments with the HADES detector and secondary pion beam at GSI

Supervised by :
Beatrice Ramstein, Thierry Hennino and Ermias Atomssa Institut de physique nucléaire d'Orsay (IPNO)

23/6/2014
Lara Hijazi
Master 2 -NPAC-

Outline

- Motivations of HADES experiments.
-Description of HADES detector.
-Pion beam experiments with HADES.
-Motivations of the test beam made at the end of April 2014.
-Analysis of the test beam results.
-Conclusion and outlook.

Motivations of HADES

- The main goal of HADES experiments is to explore strongly interacting matter in heavy-ion collisions in A+A at 1-3 Gev/Nucleon.
- Although quarks and gluons remain confined inside the nucleons, modifications of properties of hadrons are predicted.
- The best probe for such studies is the positron-electron pair because they don't make strong interactions with the surrounding hadrons.
- $p+p$ and $d+p$ reactions are also measured
- Reference for medium effects.
- Study of the emission of $e^{+} e^{-}$pair by baryonic resonances.
($\mathrm{R}=\Delta(\mathbf{1 2 3 2}$) , $\mathrm{N}(1520) .) .\mathrm{R} \rightarrow \mathrm{N}^{+} \mathrm{e}^{-}$

HADES Detector

HADES (High Acceptance Di-Electron Spectrometer) is a detector that covers the whole azimuthal angle and covers polar angles from 16° to 88° with respect to the beam direction.

It is situated at GSI in Germany.

It is very well suited in:
-Measuring Di-Electron production.
-Detecting charged hadrons.

Pion beam experiment with HADES

- New experiment in preparation (summer 2014): π^{-p} and π^{-}A reactions
- Pions are of great interest due to the better knowledge of pion-nucleon interactions than nucleon-nucleon reactions.
- Direct production of baryonic resonances ($\pi-p \rightarrow R$ instead of $p p / p n \rightarrow R N$).

Challenges:

- Pion beam is a secondary beam. It is produced by the interaction of intense ion beam (proton for example) on a thick target.
- Pions have broad spatial and momentum distributions.
- pion momentum reconstruction is needed to Calculate the missing mass of undetected particles in exclusive channels ($\pi^{-p} \rightarrow$ ne+e-).
- position reconstruction at the HADES target is needed to reject the background coming from events produced with material surrounding the target.

Spectrometric line

-It is 33 m long.

- Contains 9 quadrupoles (q), 2 dipoles (d) and 2 silicon detectors ($10 \mathrm{~cm} \times 10 \mathrm{~cm}$ with 128 channels of 300μ thickness in X and Y).

Pion reconstruction

Transport of particles in magnetic line:
-each charged particle is represented by vector $X=(x, \theta, y, \phi, \ell, \delta=\Delta p / p)$. -at first order , each magnetic element is represented by 6×6 matrix $R=$

$$
\left[\begin{array}{llll}
\mathbf{T}_{11} & \mathbf{T}_{12} & \ldots & \mathbf{T}_{16} \\
\mathbf{T}_{21} & \ldots \ldots & \mathbf{T}_{26} \\
\cdot & & \\
\cdot & & \\
\cdot & & \\
\mathbf{T}_{61} & & & \mathbf{T}_{66}
\end{array}\right]
$$

- the passage of each particle by magnetic element is represented by the equation: $X(1)=R^{*} X(0)$ and passing through many magnetic elements, the formalism can be extended with second order terms (for more precision) and the equation will be presented by:
$\mathrm{Xi}(1)=\Sigma \mathrm{Rij}^{*} \mathrm{Xj}_{\mathrm{j}}(0)+\Sigma \mathrm{T}_{\mathrm{ijk}} \mathrm{Xj}(0) \mathrm{Xk}(0)$.

An example of the matrix R for dipoles with vertical magnetic fields:

An example of the matrix R for the drift space (a free-field region) :
$\left[\begin{array}{llllll}1 & \mathrm{~L} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & \mathrm{~L} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

- Many transport coefficients have been neglected because their contributions to the positions are much lower than half resolution of the silicon detector, leading to the following simplified equations:
$X^{\text {de1 }}=\mathrm{T}_{11}{ }^{\operatorname{det} 1} \mathrm{X}_{0}+\mathrm{T}_{12}{ }^{\operatorname{det} 1} \theta_{0}+\mathrm{T}_{14}{ }^{\text {det1 }} \boldsymbol{\Phi}_{0}+\mathrm{T}_{16}{ }^{\text {det1 }} \boldsymbol{\delta}+\mathrm{T}_{116}{ }^{\text {det1 }} \mathrm{X}_{0} \boldsymbol{\delta}+\mathrm{T}_{126}{ }^{\operatorname{det} 1} \boldsymbol{\theta}_{0} \boldsymbol{\delta}+$
$\mathrm{T}_{146}{ }^{\text {det1 }} \boldsymbol{\varphi}_{0} \boldsymbol{\delta}+\mathrm{T}_{166}{ }^{\text {det1 }} \boldsymbol{\delta}^{2}$
$X^{\text {de2 }}=T_{11}{ }^{\text {det2 }} \mathrm{X}_{0}+\mathrm{T}_{12}{ }^{\text {det2 }} \theta_{0}+\mathrm{T}_{14}{ }^{\text {det2 }} \Phi_{0}+\mathrm{T}_{16}{ }^{\text {det2 }} \boldsymbol{\delta}+\mathrm{T}_{116}{ }^{\text {det2 }} \mathrm{X}_{0} \delta+\mathrm{T}_{126}{ }^{\text {det2 }} \theta_{0} \delta+$ $\mathrm{T}_{146}{ }^{\text {det2 }} \boldsymbol{\phi}_{0} \delta+\mathrm{T}_{166}{ }^{\text {det2 }} \boldsymbol{\delta}^{2}$
$Y^{\text {det1 }}=\mathrm{T}_{31}{ }^{\text {det1 }} \mathbf{x}_{0}+\mathrm{T}_{32}{ }^{\text {det1 }} \boldsymbol{\theta}_{0}+\mathrm{T}_{33}{ }^{\text {det1 }} \mathrm{y}_{0}+\mathrm{T}_{34}{ }^{\text {det1 }} \boldsymbol{\Phi}_{0}+\mathrm{T}_{36}{ }^{\text {det1 }} \boldsymbol{\delta}+\mathrm{T}_{336}{ }^{\text {det1 }} \mathrm{y}_{0} \boldsymbol{\delta}+\mathrm{T}_{346}{ }^{\text {det1 }}$ $\phi_{0} \delta+\mathrm{T}_{366}{ }^{\operatorname{det} 1} \delta^{2}$
 $\phi_{0} \delta+\mathrm{T}_{366}{ }^{\text {det } 2} \delta^{2}$

These coefficients have been calculated using the TRANSPORT code. By solving a system which is made from the above four equations, one gets the values of $\mathbf{X}_{0}, \mathbf{Y}_{0}, \theta_{0}, \varphi_{0}$ and δ. But any error on the vertical and horizontal positions translates into errors on $\mathrm{X}_{0}, \mathrm{Y}_{0}, \theta_{0}, \varphi$ and δ; so we have to check these errors experimentally.

The resolution on δ is less than $0,3 \%$, on Δx is less than 2 mm and on Δy is at the level of few hundred microns.

Motivations of the test beam

A test beam was made at the end of April at HADES where it lasts a week with a proton beam of energy of $1,9 \mathrm{GeV}$.
The goal of this test beam:

- Test the newly built silicon detectors.
- check the transport coefficients.

Configurations

- Different configurations were used (different values of $x_{0}, y_{0}, \theta_{0}, \varphi_{0}$ and δ).
- δ was changed by changing currents in the spectrometric line which means changing the momentum of the reference trajectory and not that of the proton beam.
- $\mathrm{x}_{0}, \mathrm{y}_{0}, \theta_{0}, \varphi_{0}$ were changed by adjusting the magnetic field in the two dipoles located before the production target.
- Horizontal and vertical positions on both detectors were measured for each configuration.

The first result of the test beam :
 The silicon detectors are efficient and they are working well.

(X0,y0, $00, \varphi 0, \delta)$

XO changes between: [0 and 0,137] cm y0 changes between: [0 and 0,07] cm $\theta 0$ changes between: [0 and 2,2] mrad

Extraction of positions on both detectors

A gauss fit of the hit channel distributions for detector1 in the horizontal plane.

Same procedure for detector2.

Dead channels in the Silicon detector.

Extraction of transport coefficients: T_{16} \& T166

Fitting equation $\mathrm{X}=\mathrm{Cte}+\mathrm{T} 16^{*} \delta+\mathrm{T} 166^{*} \delta^{2}$ for both detectors in horizontal plane.

detector1	$\mathrm{T}_{16}(\mathrm{~cm} / \%)$	$\mathrm{T}_{166}(\mathrm{~cm} / \% / \%)$
theoretical	$-0,81$	0,005
measured	$-0,78 \pm 0,01$	$0,004 \pm 0,006$

detector2	$T_{16}(\mathrm{~cm} / \%)$	$T_{166}(\mathrm{~cm} / \% / \%)$
theoretical	$-0,034$	-0.022
measured	$-0,081 \pm 0,01$	$-0,031 \pm 0,004$

A gauss fit of the hit channel distributions for detector1 in vertical plane.

Same procedure for detector 2.

Extraction of transport coefficients: T_{36} \& T366

Fitting equation $\mathrm{Y}=\mathrm{Cte}+\mathrm{T} 36^{*} \delta+\mathrm{T} 366^{*} \delta^{2}$ for both detectors in vertical plane.

y delta correlation for detector 1

detector1	$\mathrm{T}_{36}(\mathrm{~cm} / \%)$	$\mathrm{T}_{366}(\mathrm{~cm} / \% / \%)$
theoretical	0,395	$-0,0036$
measured	$0,301 \pm 0,02$	$-0.0431 \pm 0,001$

detector2	$\mathrm{T}_{36}(\mathrm{~cm} / \%)$	$\mathrm{T}_{366}(\mathrm{~cm} / \% / \%)$
theoretical	1,42	$-0,015$
measured	$1,12 \pm 0,04$	$-0,045 \pm 0,021$

y delta correlation for detector 2

Conclusion

- During the first week of the internship, I stayed at GSI and I participated in the test beam ; the other weeks I was working at IPNO.
-My work consisted in data analysis.
-The results presented for dispersion matrix elements will be used in pion reconstruction.

Other transport coefficients are also fitted but need further investigation.

THANK YOU

