Measurements of pion beam line optic parameters First proof of principle

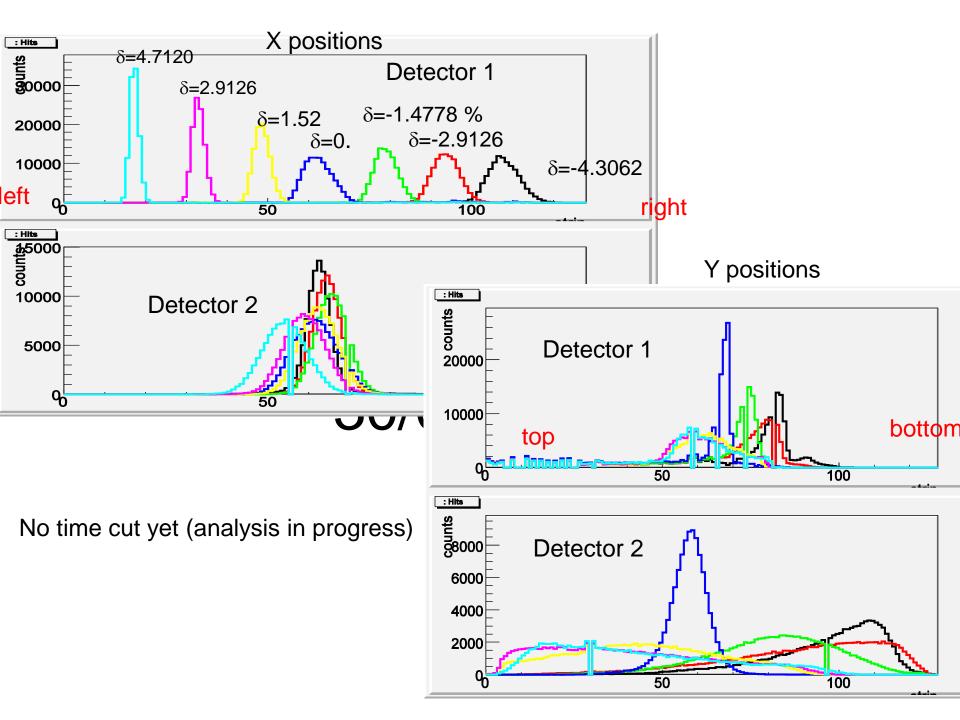
Analysis of measurements on 30/04/2014

inc. line Spectro	D= (P_spe p_beam) /p_beam (in %)	d = D/(1+D) (wrt to central spectrometer B value , in %)	1 (ref) x0= 0.0 q0= 0.0 y0 0.0 j0= 0.0	2 x0= 0.0 q0= 0.0 y0= -0.070 j0= 8.112	3 x0= 0.0 q0= 0.0 y0= -0.070 j0= -6.095	4 x0= 0.0 q0= 0.0 y0= 0.07 j0= 6.095
A (T=2.014033)	4,5	-4,3062				
B (T=1.975964)	3	-2,9126				
C (T=1.937952)	1,5	-1,4778				
D (T=1.90000 = ref)	0	0,0000				
E (T=1.862110)	-1,5	1,5228				
F (T=1.824285)	-3	3,0928				
G (T=1.786527)	-4,5	4,7120			-	
			T16, T166,	T136, T146,		T136, T146,

T36,

T366

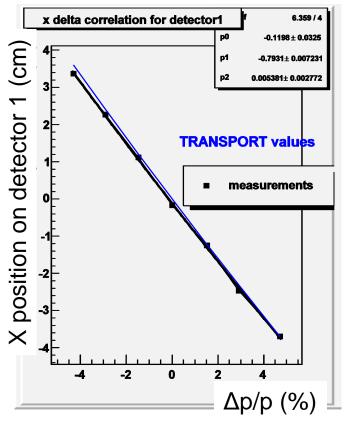
T336,


T346

T336,

T346

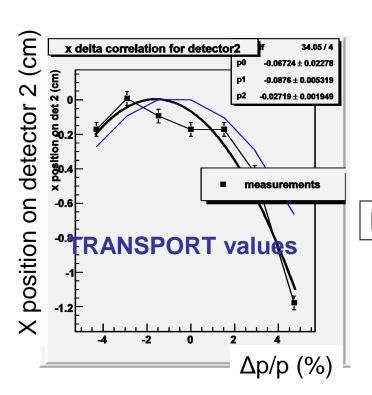
+.....


35 measurements in total

Dispersion at detector 1 plane

Measurements on detector 1 for different values of δ: 26/04/2014

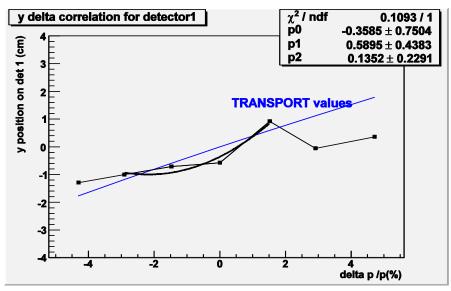
Fitted by
$$X^{det1} = T_{16}^{det1} \delta + T_{166}^{det1} \delta^2 + C$$



	measurements	TRANSPORT	
T ^{det1} ₁₆	-0.793 ± 0.07	-0.81235	
T ^{det1} ₁₆₆	0.005 ± 0.003	0.005611	

Dispersion at detector 2 plane

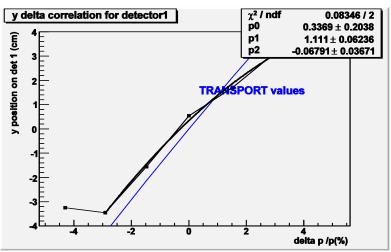
Measurements on detector 2 for different values of δ


Fitted by
$$X^{det2} = T_{16}^{det2} \delta + T_{166}^{det2} \delta^2 + C$$

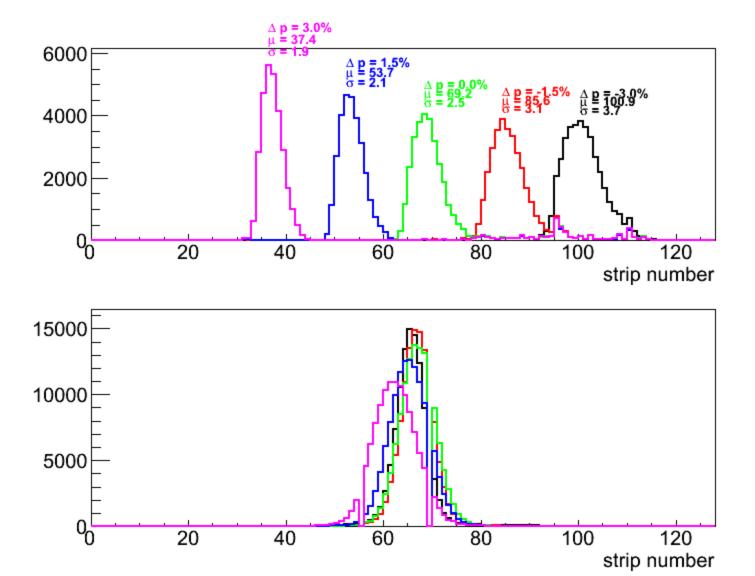
	measurements	TRANSPORT
T ^{det2} 16	-0.0876 ± 0.005	-0.03413
T ^{det2} ₁₆₆	-0.027 ± 0.002	-0.02265

Dominant effect of second order term

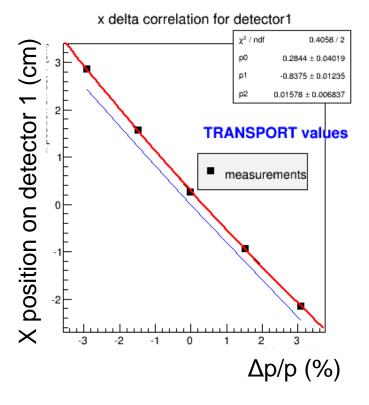
(Y,δ) correlation detector 1



T36>0
T366 small
Fit using only 4 points


 (Y,δ) correlation detector 2

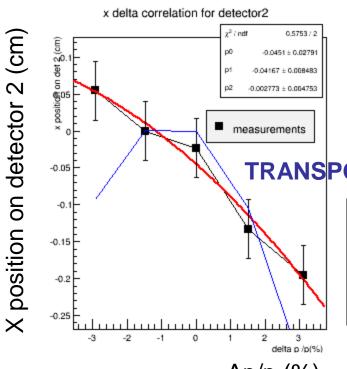
Main trend is reproduced


Analysis of measurements on 26/04/2014

Dispersion at detector 1 plane

Measurements on detector 1 for different values of δ: 26/04/2014

Fitted by
$$X^{det1} = T_{16}^{det1} \delta + T_{166}^{det1} \delta^2 + C$$



	measurements	TRANSPORT	
T ^{det1} ₁₆	-0.84 ± 0.01	-0.81235	
T ^{det1} ₁₆₆	0.016 ± 0.006	0.005611	

Dispersion at detector 2 plane

Measurements on detector 2 for different values of δ

Fitted by
$$X^{det2} = T_{16}^{det2} \delta + T_{166}^{det2} \delta^2 + C$$

	measurements	TRANSPORT
T ^{det2} 16	-0.042 ± 0.008	-0.03413
T ^{det2} ₁₆₆	-0.003 ± 0.005	-0.02265

TRANSPORT values

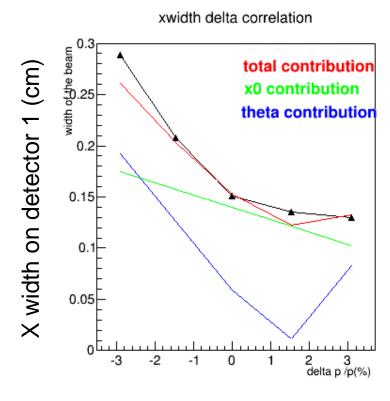
First conclusion:

check of the dispersion terms given by TRANSPORT First order terms are fine 2nd order terms too large

Analysis of the width of beam spots on detector 1

Measurements on detector 1 for different values of δ: 26/04/2014

Contributions to the width in x:

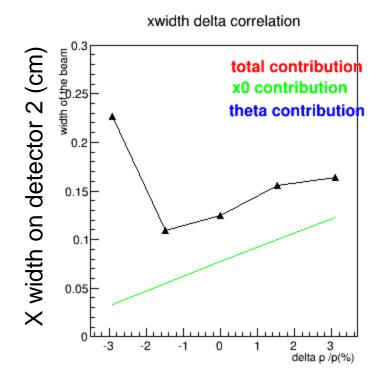

Beam horizontal size $(T_{11} + T_{116} \delta) \sigma_{X0}$ Beam horizontal angular aperture $(T_{12} + T_{126} \delta) \sigma_{\theta0}$ Beam momentum spread (210⁻⁴): negligible effect

Reasonable description of width on detector 1with

$$\sigma_{X0} = 0.08 \text{ cm}$$

$$\sigma_{\theta 0} = 1.5 \text{ mrd}$$

To be checked once T_{11} , T_{116} , T_{12} , T_{126} will be measured


Analysis of the width of beam spots on detector 1 and 2

Measurements on detector 1 for different values of δ: 26/04/2014

Contributions to the width in x:

Beam horizontal size $(T_{11} + T_{116} \delta) \sigma_{X0}$ Beam horizontal angular aperture $(T_{12} + T_{126} \delta) \sigma_{\theta0}$ Beam momentum spread (210⁻⁴): negligible effect

With the values used for detector 2 Too large contribution of angular aperture (0.6 cm) apparent inconsistency to be understood once T_{11} , T_{116} , T_{12} , T_{126} will be measured

To do

Extract position and width using strip distribution with time cut (Lukas) Understand width on detector 1 and 2 Analysis of all coefficients, new coefficients to be used for data analysis