Selection of the Momentum

Selection of the Momentum

MaxMom for each Run (0.690 GeV/c, PE)

MaxMom for each Run (0.690 GeV/c, PE)

MaxMom for each Run (0.690 GeV/c, C)

MaxMom summary of 0.690 GeV/c

HADMU1: -1.139 HADMU2: -1.137

HADMU1: -1.139 HADMU2: -1.139

HADMU1: -1.139 HADMU2: -1.138

~ 0.6955 GeV/c				
~ 0.698 GeV/c				
~ 0.698 GeV/c				

→ Different settings for PE and C data → Change of transmission

Calibration: Elastic Scattering

Polyethylene target $(H_4C_2): \pi^- + p \rightarrow \pi^- + p$

ELASTIC SCATTERING

Reminder: Comparison $M_{\pi-p}$ and \sqrt{s}

CENTRAL BEAM MOMENTUM: 0.690 GeV/c

Resolution Comparison

CENTRAL BEAM MOMENTUM: 0.690 GeV/c

- $\rightarrow \sigma_{PT} < \sigma_{HADES}$: intrinsic resolution of pion tracker much better (0.5 ‰)
- → HADES is not able to resolve MaxMom of the pion tracker
- → **MeanMom** is used instead of MaxMom to check the stability of InvMass

CENTRAL BEAM MOMENTUM: 0.690 GeV/c (PE)

- \rightarrow For some days a linear dependence is visible: Shift_{av} = 11 MeV/c
- → Part of this offset correspondes due to the dE/dx: GEANT4: 4 MeV/c & NIST: 7 MeV/c
- → Larger/smaller shifts due to different impact positions (x₀,y₀) of the primary beam on the production target

- Correction only for PE data: Δ(mom invmass rec mom)
- → No correction possible for C data:
 - \rightarrow Different impact positions (x₀,y₀) of the primary beam on the production target
 - → Different beamline settings

 \rightarrow Correction only for PE data: Δ (mom invmass - rec mom)

→ No correction possible for C data:

- \rightarrow Different impact positions (x₀, y₀) of the primary beam on the production target
- → Different beamline settings

Summary of 0.748 GeV/c (PE)

 \rightarrow Correction only for PE data: Δ (mom invmass - rec mom)

→ No correction possible for C data:

- \rightarrow Different impact positions (x₀,y₀) of the primary beam on the production target
- → Different beamline settings

 \rightarrow Correction only for PE data: Δ (mom invmass - rec mom)

→ No correction possible for C data:

- \rightarrow Different impact positions (x₀,y₀) of the primary beam on the production target
- → Different beamline settings

Summary & Outlook

Momentum Selection & Calibration:

→ Selection based on MaxMom of reference sample for each run

→ DST: first momentum (per event) == selected momentum

→ Calibration:

- \rightarrow No linear correlation between mean mom($M_{\pi-p,HADES,av}$) & mean mom(PT_{av})
- → Correction only for PE data:
 - $\rightarrow \Delta(\text{mom}(M_{\pi\text{-}p,\text{HADES,av}}) \text{mom}(PT_{av}))$
- ➔ No correction possible for C data:
 - → Different beamline sectings (HADMU1 & HADMU2)
 - Different impact positions (x₀,y₀) of the primary beam on the production target

BACKUP

- → No linear dependence is visible
- → Correction according to InvMass

Summary ^{SCM} Jutlook

Relatively small effect up to 0.6 mm Most probable value not affected, mean value slightly shifted downwards

 $Y_{c=-0.2}$ mm Yc=-0.4 mm Yc=-0.6 mm Yc=-1 mm

Effect is larger Most probable value shifted downwards

CENTRAL BEAM MOMENTUM: 0.748 GeV/c (PE)

Comparison between $M_{\pi-p}$ and \sqrt{s}

Energy Loss along the Chicane

Comparison between $M_{\pi-p}$ and \sqrt{s}

Momentum Shift Correction of Vs

Comparison between $M_{\pi-p}$ and \sqrt{s}

Energy Loss along the Chicane

Energy Loss Correction of Vs

	√s (tuned HADMU2 (START)):		ΔE 6	InvMass (dE/dx + mag. field corr.):
GEANT4	1472		5	1467
	1526 1557		7 7	1519 1550
		I		
	√s (tuned HADMU2 (START)):		ΔE	InvMass (dE/dx + mag. field corr.):

	vs (tuned HADIVIUZ (START)):	
	1492	
NIST	1470	
	1524	
	1555	

InvMass (dE/dx + mag. field corr.):
1488
1467
1519
1550

Comparison between $p_{\pi}(Vs)$ and $p_{\pi}(M_{\pi-p})$

Momentum Shift Correction of Vs

Momentum Shift Correction of Vs

GEANT4	√s (tuned HADMU2 (START)): 1493 1471 1524 1556	ΔE 5 4 5 6	InvMass (dE/dx + mag. field corr.): 1488 1467 1519 1550
NIST	√s (tuned HADMU2 (START)): 1491 1469 1523 1554	ΔE 3 2 4 4	InvMass (dE/dx + mag. field corr.): 1488 1467 1519 1550

Comparison between $p_{\pi}(Vs)$ and $p_{\pi}(M_{\pi-p})$

- → In both cases part of the shift is remaining, most likely due to the finetuning of the magnets
- → Which dE/dx correction is more reliable?

CENTRAL BEAM MOMENTUM: 0.690 GeV/c (PE)

No linear dependence